Dallas-Fort Worth Area Link-Based On-road Emission Inventories with MOVES2014b for 2012 and 2020

May 2019

What is NCTCOG?

The North Central Texas Council of Governments (NCTCOG) is a voluntary association of, by, and for local governments within the 16-county North Central Texas Region. The agency was established by state enabling legislation in 1966 to assist local governments in **planning** for common needs, **cooperating** for mutual benefit, and **coordinating** for sound regional development. Its purpose is to strengthen both the individual and collective power of local governments, and to help them recognize regional opportunities, resolve regional problems, eliminate unnecessary duplication, and make joint regional decisions – as well as to develop the means to implement those decisions.

North Central Texas is a 16-county **metropolitan region** centered around Dallas and Fort Worth. The region has a population of more than 7 million (which is larger than 38 states), and an area of approximately 12,800 square miles (which is larger than nine states). NCTCOG has 229 member governments, including all 16 counties, 167 cities, 19 independent school districts, and 27 special districts.

NCTCOG's **structure** is relatively simple. An elected or appointed public official from each member government makes up the **General Assembly** which annually elects NCTCOG's **Executive Board**. The Executive Board is composed of 17 locally elected officials and one ex-officio non-voting member of the legislature. The Executive Board is the policy-making body for all activities undertaken by NCTCOG, including program activities and decisions, regional plans, and fiscal and budgetary policies. The Board is supported by policy development, technical advisory and study **committees** – and a professional staff led by **R. Michael Eastland**, Executive Director.

NCTCOG's offices are located in Arlington in the Centerpoint Two Building at 616 Six Flags Drive (approximately one-half mile south of the main entrance to Six Flags Over Texas).

North Central Texas Council of Governments P. O. Box 5888 Arlington, Texas 76005-5888 (817) 640-3300 FAX: (817) 640-7806 Internet: http://www.nctcog.org

NCTCOG's Department of Transportation

Since 1974 NCTCOG has served as the Metropolitan Planning Organization (MPO) for transportation for the Dallas-Fort Worth area. NCTCOG's Department of Transportation is responsible for the regional planning process for all modes of transportation. The department provides technical support and staff assistance to the Regional Transportation Council and its technical committees, which compose the MPO policy-making structure. In addition, the department provides technical assistance to the local governments of North Central Texas in planning, coordinating, and implementing transportation decisions.

Prepared in cooperation with the U.S. Department of Transportation (Federal Highway Administration and Federal Transit Administration) and the Texas Department of Transportation.

The contents of this report reflect the views of the authors who are responsible for the opinions, findings, and conclusions presented herein. The contents do not necessarily reflect the views or policies of the Federal Highway Administration, the Federal Transit Administration, or the Texas Department of Transportation.

Dallas-Fort Worth Area Link-Based On-road Emission Inventories with MOVES2014b for 2012 and 2020

May 2019

NCTCOG Executive Board 2018-2019

President **Kevin Strength** Mayor, City of Waxahachie

Vice President J.D. Clark County Judge, Wise County

Secretary-Treasurer Ray Smith Mayor, Town of Prosper

Past President Tom Lombard Councilmember, City of North Richland Hills

Director Kelly Allen Gray Councilmember, City of Fort Worth Director Chris Hill County Judge, Collin County

Director Clay Lewis Jenkins County Judge, Dallas County

Director Lee M. Kleinman Councilmember, City of Dallas

Director Curtistene McCowan Mayor, City of Desoto

Director Bobbie Mitchell Commissioner, Denton County Director **Tito Rodriguez** Councilmember, City of North Richland Hills

Director Nick Sanders Mayor, Town of Trophy Club

Director Rick Stopfer Mayor, City of Irving

Director David Sweet County Judge, Rockwall County

Director Paul Voelker Mayor, City of Richardson Director B. Glen Whitley County Judge, Tarrant County

Director Kathryn Wilemon Councilmember, City of Arlington

Ex Officio, Non-Voting Member **Ron Simmons** Member of the Texas Legislature

Executive Director **R. Michael Eastland**

Regional Transportation Council 2018-2019

Gary Fickes, Chair Commissioner, Tarrant County

Andy Eads, Vice Chair County Judge, Denton County

Roger Harmon, Secretary County Judge, Johnson County

Tennell Atkins Councilmember, City of Dallas

Richard E. Aubin Councilmember, City of Garland

Sue S. Bauman Board Chair, Dallas Area Rapid Transit

Mohamed "Mo" Bur, P.E. District Engineer, Texas Department of Transportation, Dallas District

Loyl C. Bussell, P.E. District Engineer, Texas Department of Transportation, Fort Worth District

Rickey D. Callahan Councilmember, City of Dallas

George Conley Commissioner, Parker County

David L. Cook Mayor, City of Mansfield

Theresa Daniel, Ph.D. Commissioner, Dallas County

Rudy Durham Mayor, City of Lewisville

Charles Emery Chairman, Denton County Transportation Authority

Kevin Falconer Mayor, City of Carrollton

Surface Transportation Technical Committee

Kristina Holcomb, Chair Vice President of Strategic Planning and Development, Denton County Transportation Authority

Rob Franke, P.E. Mayor, City of Cedar Hill

George Fuller Mayor, City of McKinney

Rick Grady Councilmember, City of Plano

Lane Grayson Commissioner, Ellis County

Sandy Greyson Councilmember, City of Dallas

Jim Griffin Mayor, City of Bedford

Mojy Haddad Board Member, North Texas Tollway Authority

Clay Lewis Jenkins County Judge, Dallas County

Ron Jensen Mayor, City of Grand Prairie

Jungus Jordan Councilmember, City of Fort Worth

Lee M. Kleinman Councilmember, City of Dallas

David Magness Commissioner, Rockwall County

Scott Mahaffey Chairman, Trinity Metro

B. Adam McGough Councilmember, City of Dallas

William Meadows Board Chair, Dallas Fort Worth International Airport Steve Mitchell Councilmember, City of Richardson

Cary Moon Councilmember, City of Fort Worth

Stan Pickett Mayor, City of Mesquite

John Ryan Councilmember, City of Denton

Will Sowell Councilmember, City of Frisco

Stephen Terrell Mayor, City of Allen

T. Oscar Trevino, Jr., P.E. Mayor, City of North Richland Hills

William Tsao, P.E. Citizen Representative, City of Dallas

Dennis Webb Councilmember, City of Irving

Duncan Webb Commissioner, Collin County

B. Glen Whitley County Judge, Tarrant County

Kathryn Wilemon Councilmember, City of Arlington

W. Jeff Williams Mayor, City of Arlington

Ann Zadeh Councilmember, City of Fort Worth

Michael Morris, P.E. Director of Transportation, NCTCOG

ABSTRACT

TITLE:	Dallas-Fort Worth Area Link-Based On-road Emission Inventories with MOVES2014b for 2012 and 2020
DATE:	May 2019
AUTHORS:	Chris Klaus Senior Program Manager
	Jenny Narvaez Program Manager
	Vivek Thimmavajjhala Transportation System Modeler
	Jackson Enberg Air Quality Operations Analyst
SUBJECT:	Development of 2012 and 2020 On-road Emission Inventories for Summer and School Season for the Dallas-Fort Worth Area
SOURCES OF COPIES:	Transportation Department North Central Texas Council of Governments PO Box 5888 Arlington, Texas 76005-5888 (817) 695-9240
NUMBER OF PAGES:	52
ABSTRACT:	The North Central Texas Council of Governments conducted a summer and school season emissions inventory to support the Texas Commission on Environmental Quality's photochemical modeling effort to develop an Attainment Demonstration State Implementation Plan for the pollutant ozone. This report documents the on-road mobile methodologies applied and estimated emission results for the 2012 and 2020 analysis years. This analysis covers the following counties: Collin, Dallas, Denton, Ellis, Hood, Hunt, Johnson,

Kaufman, Parker, Rockwall, Tarrant, and Wise. The 12-county estimated on-road mobile source emissions are reported for volatile organic compounds, carbon monoxide, nitrogen oxide, nitrogen dioxide, nitrous acid, oxides of nitrogen, carbon dioxide, methane, sulfur dioxide, ammonia, nitrous oxide, particulate matter with aerodynamic diameters equal to or less than 2.5 microns – total, brake wear, tire wear, organic carbon, elemental carbon, sulfate, composite – nonECPM, and noncarbon organic matter, particulate matter with aerodynamic diameters equal to or less than 10 microns – total, brake wear, tire wear, nitrate, and ammonium, for summer and school days in the years 2012 and 2020.

ACKNOWLEDGEMENTS

The North Central Texas Council of Governments would like to thank the following individuals for their invaluable assistance in preparing this report.

Michael Morris, P.E. Dan Kessler **Berrien Barks** Emily Beckham Cecilia Howard Dan Lamers, P.E. Kurt Lehan Kevin Feldt, AICP Arash Mirzaei, P.E. Ashley Releford **Brock Pair** Samuel Simmons Francisco Torres Mitzi Ward Kathleen Yu Chris Kite Chris Owen Leslie Schmidt Matthew Southard Danielle Nesvacil

Director of Transportation Assistant Director of Transportation **Program Manager** Grants and Contract Manager Senior Administrative Assistant Senior Program Manager Transportation Planner III **Program Manager** Senior Program Manager Senior Grants and Contracts Coordinator Grants and Contracts Coordinator I **Transportation Planner III** Data Applications Manager **Principal Transportation Planner** Principal Transportation System Modeler Texas Commission on Environmental Quality Texas Commission on Environmental Quality

GLOSSARY OF ABBREVIATIONS

ADSIP	-	Attainment Demonstration			Governments
		State Implementation Plan	NH₃	-	Ammonia
ASWT	-	Average School Season	NH_4	-	Ammonium
		Weekday Traffic	NHB	-	Non-Home Based
ASM	-	Acceleration Simulation	NO	-	Nitrogen Oxide
		Mode	NO ₂	-	Nitrogen Dioxide
ATR	-	Automatic Traffic Recorder	NO ₃	-	Nitrate
AVFT	-	Alternative Vehicle Fuel	NO _X	-	Oxides of Nitrogen
		Technology	NonECPM	-	Non Elemental Carbon
CAAA	-	Clean Air Act Amendments			Particulate
CO	-	Carbon Monoxide			Matter
CO ₂	-	Carbon Dioxide	O ₃	-	Ozone
DFW	-	Dallas-Fort Worth	PAH	-	Polycyclic Aromatic
DFX	-	Dallas-Fort Worth Travel			Hydrocarbon
		Model for the Expanded	ppb	-	parts per billion
		Area	PM	-	Particulate Matter
EPA	-	Environmental Protection Agency	PM _{2.5}	-	Particulate Matter 2.5 Microns
ETBE	-	Ethyl Tertiary Butyl Ether	PM ₁₀	-	Particulate Matter 10
GIS	-	Geographic Information			Microns
System		U .	RVP	-	Reid Vapor Pressure
GISDK	-	Geographic Information	SIP	-	State Implementation Plan
		System Developer Kit	SO ₂	-	Sulfur Dioxide
H ₂ O	-	, Water vapor	SUT	-	Source Use Type
HBW	-	Home-Based Work	TAME	-	Tertiary Amyl Methyl Ether
HNW	-	Home-Based Non-Work	TCEQ	-	Texas Commission on
HONO	-	Nitrous Acid			Environmental Quality
HOV	-	High Occupancy Vehicle	TOD	-	Time-of-Day
HPMS	-	Highway Performance	TSZ	-	, Traffic Survey Zone
		Monitoring System	ТТІ	-	, Texas A and M Transportation
I/M	-	Inspection & Maintenance			Institute
,		Program	TxDMV	-	Texas Department of Motor
MPA	-	Metropolitan Planning Area			Vehicles
MPO	-	Metropolitan Planning	TxDOT	_	Texas Department of
		Organization			Transportation
MOVES2014	1b -	Motor Vehicle Emissions	TxLED	_	Texas Low Emission Diesel
		Simulator version 2014b	UI	_	User Interface
MTBE	-	Methyl Tertiary Butyl Ether	VHT	_	Vehicle Hours of Travel
NAAOS	_	National Ambient Air Quality	VMT	_	Vehicle Miles of Travel
		Standards	VDF	_	Volume Delay Function
NCOM	-	Non-carbon Organic Matter	VOC	_	Volatile Organic Compounds
NCT	_	North Central Texas			
NCTCOG	- N	North Central Texas Council of			
NCICOG	- r	North Central Texas Council of			

Table of Contents

Chapter 1: Introduction	1
Background	2
Modeling Approach	3
Chapter 2: Vehicle Activity Estimation Procedures	7
Dallas-Fort Worth Expanded Travel Model	7
Multimodal Transportation Analysis Process	7
Trip Generation Model	8
Trip Distribution Model	9
Mode Choice Model1	0
Roadway Assignment1	0
Speed Estimation Procedure1	0
Local Street VMT1	2
Adjustments 1	2
Seasonal, Daily, and Hourly Adjustments1	2
DFX Counties Seasonal and Daily Adjustments	2
Hourly Adjustments1	3
Model VMT Adjustments (HPMS vs. DFX)1	4
Nonrecurring Congestion1	5
VMT Estimates1	6
CHAPTER 3: Off-network Activity1	7
Estimation of SHP1	7
Vehicle Type Total Available Hours1	7
Vehicle Type VHT	7
Estimation of Starts1	8
Estimation of SHI and APU Hours1	8
Hotelling Activity Scaling Factors1	9
Hotelling Activity Hourly Factors1	9
County-Level CLhT_Diesel Hotelling Activity by Hour Estimation	9
County-Level CLhT_Diesel SHI and APU Hours Estimation	0
Chapter 4: Emission Factor Estimation Procedure	1
MOVES2014B Model and Input Parameters	1
Area Specific Calculations and Procedures2	8
Fuel Engine Fraction	0
MOVES2014b Emission Factors	0
Adjustments	0

TxLED NO _x Adjustment	
Vehicle Miles of Travel Mix (VMT Mix)	
Chapter 5: Emission Calculation	
CHAPTER 6: Summary of Vehicle Miles of Travel, Speed, and Emissions	
Vehicle Miles of Travel Estimates	
Speed Estimates	
Emission Estimates	

List of Exhibits

Exhibit 1.1: DFW 10-County Nonattainment Area Map	. 3
Exhibit 1.2 DFW Travel Demand Modeling Domain Map	. 5
Exhibit 1.3: 2012 Emission Inventory Summary for the DFW 12-County MPA	. 6
Exhibit 1.4: 2020 Emission Inventory Summary for the DFW 12-County MPA	. 6
Exhibit 2.1: Socioeconomic Demographic Summary for the DFW 12-County Modeling Domain	. 9
Exhibit 2.2: Average Loaded Speeds (miles per hour) 1	12
Exhibit 2.3: Seasonal/Daily Adjustment Factors for the DFW 12-County Modeling Domain 1	13
Exhibit 2.4: 2020 Summer Season Hourly Adjustment Factors for the DFW 12-County Modeling	3
Domain1	14
Exhibit 2.5: 2010 DFW and HPMS VMT Analysis 1	15
Exhibit 2.6: Vehicle Miles of Travel 1	16
Exhibit 4.1: MOVES2014b Modeled Pollutants 2	21
Exhibit 4.2: MOVES2014b External Conditions	22
Exhibit 4.3: MOVES2014b Input Parameters and Source 2	23
Exhibit 4.4: MOVES2014b I/M Descriptive Inputs for Subject Counties	25
Exhibit 4.5: MOVES2014b Fuel Properties2	27
Exhibit 4.6: County to County Worker Flow 2	29
Exhibit 4.7: TxLED NO _x Adjustments	30
Exhibit 4.8: Vehicle Classification Process	32
Exhibit 5.1: MOVES2014b Emission Calculation Modeling Process	34
Exhibit 6.1: Vehicle Miles of Travel (Miles/Day) Estimates for the DFW 12-County Modeling	
Domain	36
Exhibit 6.2: Speed (miles per hour) Estimates for the DFW 12-County Modeling Domain	38
Exhibit 6.3: Emission Estimates for the DFW 12-County Modeling Domain	40

CHAPTER 1: INTRODUCTION

The North Central Texas Council of Governments (NCTCOG) conducted 2012 and 2020 on-road emissions inventory to support the Texas Commission on Environmental Quality's (TCEQ) efforts to develop modeling work for the Attainment Demonstration State Implementation Plan (ADSIP). These inventories will serve as base-case (2012) validation and future year (2020) attainment demonstration in the TCEQ's photochemical modeling efforts. The successful completion of this project will ensure the TCEQ continues employing accurate and detailed onroad mobile source emission inventories providing timely support of SIP development and overall TCEQ planning activities. The emissions inventory analysis period covers summer and school seasons within the North Central Texas (NCT) 12-County Metropolitan Planning Area (MPA): Collin, Dallas, Denton, Ellis, Hood, Hunt, Johnson, Kaufman, Parker, Rockwall, Tarrant, and Wise Counties. Pollutants being evaluated are volatile organic compounds (VOC), carbon monoxide (CO), nitrogen oxide (NO), nitrogen dioxide (NO₂), nitrous acid (HONO), oxides of nitrogen (NO_x), carbon dioxide (CO₂), methane (CH₄), sulfur dioxide (SO₂), ammonia (NH₃), nitrous oxide (N_2O), particulate matter with aerodynamic diameters equal to or less than 2.5 microns (PM_{2.5}) - total, brake wear, tire wear, organic carbon, elemental carbon, sulfate, composite – nonECPM, and non-carbon organic matter, particulate matter with aerodynamic diameters equal to or less than 10 microns (PM_{10}) – total, brake wear, tire wear, nitrate (NO_3) , and ammonium (NH₄).

This report documents the methodology and results of the 2012 and 2020 On-road Mobile Source Emissions Inventory. Chapter 1 outlines the background, purpose, scope, and modeling approach for the emissions inventory and provides a summary of the 12-county estimated emission totals.

Chapter 2 documents the procedures used to develop regional vehicle activity estimates in terms of vehicle miles of travel (VMT) and average vehicle speed. These procedures include development of adjustment factors to more accurately reflect regional conditions. Seasonal and hourly adjustment factors were applied to produce summer and school season vehicle activity, and report vehicle activity in hourly periods. Consistent with previous emissions inventory practices, a comparison was made between travel demand model VMT estimates and appropriate Highway Performance Monitoring System (HPMS) VMT, to develop HPMS adjustment factors. Also, a nonrecurring congestion adjustment was applied to account for vehicle emissions due to traffic accidents not captured in the standard four-step travel modeling process.

Chapter 3 documents the procedures used to develop the off-network activity, i.e. the source hours parked (SHP), starts, source hours idling (SHI), and auxiliary power units (APU) hours.

Chapter 4 identifies the parameters and inputs used to develop on-road mobile source emission factors by utilizing the United States Environmental Protection Agency's (EPA) Motor Vehicle Emissions Simulator version 2014b (MOVES2014b) model. Regionally specific calculations,

procedures, MOVES2014b emission factors, and adjustments are provided to better reflect regional vehicle emissions emitted. The calculations and procedures include source use type age distribution, fuel engine fractions, and hourly VMT, etc. Also accounted for is low emission diesel NO_x adjustments.

Chapter 5 includes the 12-county area vehicle emission calculation flowchart.

Chapter 6 documents VMT, average vehicle speed, and NO_X , VOC, CO, CO₂, NO, and NO_2 emissions by day of week and county.

The Appendix contains supplemental information referenced in this document as well as the electronic data supporting the Dallas-Fort Worth (DFW) 2012 and 2020 On-road Mobile Emissions Inventory.

Appendix A: MOVES2014b External Files
Appendix B: MOVES2014b Input and Output Database Files
Appendix C: MOVES2014b Emission Factors
Appendix D: Emission County Files and Link Files (Tab-delimited Format)
Appendix E: Emission Summary Files (Tab-delimited Format)
Appendix F: SCC and XML Files

Appendix G: Project Quality Control Report and Travel Model Validation Report

Background

The TCEQ is planning for a future SIP submission to the U.S. EPA that may be required under the 2008 eight-hour ozone standard of 75 parts per billion (ppb). Under this standard, 10 counties within the DFW area are classified as nonattainment. Hood and Hunt counties are classified as attainment but are included in this work because they are contained within the travel demand model network managed by the NCTCOG. At this time, the 10-county DFW area (exhibit 1.1) is expected to be reclassified as a serious nonattainment area for the 2008 eight-hour ozone standard with an attainment date of July 20, 2021. If required, an attainment demonstration analysis would need to be based on future year emissions estimates for 2020, which represents the complete ozone season prior to the required attainment date. The TCEQ currently has a 2012 base case ozone episode spanning the five months of May through September. For major metropolitan areas such as DFW, on-road emission inventories need to be developed using activity data from local travel demand models.

Exhibit 1.1: DFW 10-County Nonattainment Area Map

NCTCOG applies a four-step travel demand model process using TransCAD software to forecast regional vehicle activity and utilizes EPA's MOVES2014b with a post-processing application to estimate regional mobile source emissions.

Modeling Approach

The DFW Travel Model for the Expanded Area (DFX) is employed to estimate VMT and emissions for the 2012 and 2020 summer and school seasons. DFX's modeling domain includes Collin, Dallas, Denton, Ellis, Hill, Hood, Hunt, Johnson, Kaufman, Parker, Rockwall, Tarrant, and Wise Counties. Hill County is not part of the NCT MPA boundary; however, to capture travel from outside areas, Hill County is included in the modeling domain. The 13-county DFX modeling domain is shown in Exhibit 1.2.

Several components of the model were updated as part of this model expansion. These include improvements to the following: mode-choice model; vehicle ownership model; external stations; volume-delay-function; transit assignment, and traffic assignment convergence criteria, which are discussed in Chapter 2. The final 2012 and 2020 on-road emission estimates

by pollutant for summer and school day types are shown in Exhibits 1.3 and 1.4. Appendix D contains the detailed emissions by county by pollutant by day type and time-of-day, respectively for all NCT counties modeled.

Exhibit 1.2 DFW Travel Demand Modeling Domain Map

Summer Season Total Emissions (tons per day)						
	NOx	VOC	со	CO ₂	NO	NO ₂
Midweek	230.74	95.99	1,236.98	109,176.44	206.01	22.88
Friday	236.95	98.36	1,336.11	116,903.49	211.33	23.73
Saturday	169.75	88.54	1,169.29	90,458.95	151.54	16.86
Sunday	154.89	84.04	1,019.02	76,320.21	138.58	15.06
		School Seas	on Total Emissi	ons (tons per day)		
	NOx	VOC	СО	CO ₂	NO	NO ₂
Midweek	226.73	95.27	1,221.14	107,237.12	202.47	22.45
Friday	237.52	98.56	1,340.96	117,500.27	211.82	23.80
Saturday	169.10	88.50	1,169.86	90,505.53	150.95	16.79
Sunday	151.42	83.39	1,002.15	74,562.98	135.52	14.69

Exhibit 1.3: 2012 Emission Inventory Summary for the DFW 12-County MPA

Exhibit 1.4: 2020 Emission Inventory Summary for the DFW 12-County MPA

Summer Season Total Emissions (tons per day)						
	NOx	VOC	СО	CO ₂	NO	NO ₂
Midweek	92.88	54.90	979.98	116,055.25	77.58	14.55
Friday	94.49	55.83	1,062.78	124,037.40	79.13	14.61
Saturday	67.87	51.76	937.32	95,070.72	57.99	9.33
Sunday	62.82	49.97	814.29	80,346.85	53.64	8.67
School Season Total Emissions (tons per day)						
		School Sea	son Total Emissi	ons (tons per day)		
	NOx	School Sea	son Total Emissi CO	ons (tons per day) CO2	NO	NO ₂
Midweek	NO x 91.33	School Sea	son Total Emissi CO 967.26	ons (tons per day) CO2 113,883.91	NO 76.33	NO 2 14.27
Midweek Friday	NO x 91.33 94.65	School Sea VOC 54.60 55.89	son Total Emissi CO 967.26 1,065.71	ons (tons per day) CO2 113,883.91 124,575.48	NO 76.33 79.26	NO₂ 14.27 14.63
Midweek Friday Saturday	NOx 91.33 94.65 67.57	School Sea VOC 54.60 55.89 51.74	son Total Emissi CO 967.26 1,065.71 937.38	ons (tons per day) CO2 113,883.91 124,575.48 95,041.48	NO 76.33 79.26 57.76	NO₂ 14.27 14.63 9.27

CHAPTER 2: VEHICLE ACTIVITY ESTIMATION PROCEDURES

This chapter discusses the methodology used in estimating the vehicle activity measures influencing air quality in the North Central Texas area. These measures include vehicle miles of travel (VMT) and average speed. The current Dallas-Fort Worth Travel Model for the Expanded Area (DFX) covers the 12-county Metropolitan Planning Area (MPA) of Collin, Dallas, Denton, Ellis, Hood, Hunt, Johnson, Kaufman, Parker, Rockwall, Tarrant, and Wise counties, plus Hill County. The VMT and speeds were estimated with the DFX using a link-based methodology for each time period.

Dallas-Fort Worth Expanded Travel Model

The source of VMT estimates for the Attainment Demonstration (AD) Emission Inventories for the nonattainment counties is the network-based DFX executed by the North Central Texas Council of Governments (NCTCOG) Transportation Department in the TransCAD environment. TransCAD is a Geographic Information System-based commercial travel demand software package for transportation planning. DFX supports federally required regional transportation planning efforts for the Dallas-Fort Worth (DFW) area. Since 1974, NCTCOG has served as the Metropolitan Planning Organization (MPO) for the DFW area. The Transportation Department provides technical support and staff assistance to the Regional Transportation Council and its technical committees that comprise the MPO policy-making structure.

Multimodal Transportation Analysis Process

The forecasting technique of the DFX is based on a four-step sequential process designed to model travel behavior and predict travel demand at regional, sub-area, or corridor levels. These four steps are: Trip Generation, Trip Distribution, Mode Choice, and Roadway Assignment.

The roadway network developed for the AD Emissions Inventories contains over 30,000 unique segments constructed to replicate the transportation system of the coverage area. For this AD inventory, the transportation network was developed for the years 2012 and 2020. Each facility link in the network has the following attributes:

- Network Node Numbers (defining the beginning and end of each link)
- Number of Operational Lanes in the AM PM Peak and Off-Peak Periods
- Functional Classification
- Divided/Undivided Roadway Code
- Type of Traffic Control at Each End of the Link
- Traffic Direction (One- or Two-Way)
- Length of Link

- Estimated Loaded Speeds in Each Period
- Speed Limit
- Traffic Survey Zone
- Tolls
- Area Type
- Free-Flow Speeds
- Hourly Capacities
- Truck Exclusion Code
- Length of Link

Every roadway segment in the network falls in one of the functional classes of centroid connectors, freeways, principal arterials, minor arterials, collectors, ramps, frontage roads, and high occupancy vehicle (HOV) lanes.

Trip purposes in the DFX are defined in one of four ways: home-based work (HBW), which includes trips from home to work or work to home; home-based non-work (HNW), which includes non-work trips beginning or ending at home; non-home based (NHB), which includes trips where home is neither the origin nor the destination; and other trips that include all truck trips as well as all external-internal, internal-external, and external-external vehicle trips.

The model process begins with an estimate of the socio-economic variables for each zone. The data is organized by traffic survey zone (TSZ), the smallest zone size available in the DFX. There are 5,386 TSZs in the model (5,303 internal zones plus 83 externals). The data for each TSZ includes: zone centroid; median household income; number of households; population; basic, retail, and service employment; and land area. This level of detail is retained in all four modeling steps.

The Trip Generation Model generates the number of weekday person trips sent to and received from each zone. The Trip Distribution Model determines the trip interaction between each zone and the rest of the zones in the MPA. The Mode Choice Model divides the person trips into two categories of transit and automobile trips. The Assignment Model loads the auto demand onto the roadway network, and the transit passenger trips onto the transit network, commonly referred to as the four-step transportation modeling process. The DFX model application is written by NCTCOG staff in the TransCAD script language known as the Geographic Information System Developer Kit (GISDK), and integrated with a user interface developed in visual basic programming language.

Trip Generation Model

The Trip Generation Model is a computer program written in GISDK script language by NCTCOG. The Trip Generation Model converts the population and employment data into person trip ends and outputs the total number of trips produced by and attracted to each zone by trip purpose. The 2012 and 2020 population and employment forecasts were generated with the Disaggregate Residential Allocation Model/Employment Allocation Model using travel times from the Roadway and Transit Assignment Steps consistent with current planning practice. The cross-classified trip production model is stratified by income quartile and household size. The allocation of TSZ households into the four income quartiles and six household size categories is based on distribution curves developed from the United States Census Population data. The cross-classified trip attraction model is stratified by area type, employment type (basic, retail, and service), and, for the case of the HBW trip purpose, income quartile. Area type designations are a function of the population and employment density of a zone.

	2012	2020
Population	6,610,007	7,680,766
Number of Households	2,388,532	2,737,331
Employment Types		
Basic	995,743	1,165,456
Retail	393,697	473,876
Service	2,739,328	3,278,063
Total Employment	4,128,768	4,917,395

Exhibit 2.1: Socioeconomic Demographic Summary for the DFW 12-County Modeling Domain

The Trip Generation Model allows the user to input trip rates and trip generation units associated with special generators such as regional shopping malls, hospitals, and colleges/universities. At the end of the generation process, HBW trips are balanced to the estimated trip attractions. All other purposes are balanced to the estimated trip productions in that zone. Because of the uniqueness of the NHB trips, zonal productions for NHB trips are later set equal to the attractions in a given zone.

The regional trip productions and attractions are balanced for each trip purpose. The total trip attractions are balanced to the estimated trip productions in that zone for all other trip purposes.

Trip Distribution Model

The Trip Distribution Model creates the production-attraction person trip tables for each of the 5,386 model zones. The Trip Distribution Model uses the person trips produced by and attracted to each zone, generated in the Trip Generation Model, plus zone-to-zone minimum travel time information from the roadway network to estimate the number of person trips between each pair of zones for each trip purpose. All estimates of roadway travel times include a representation of the time needed for locating a parking space, paying for parking, and walking from the car to the final destination. Estimates of these terminal times were derived from NCTCOG's 1994 Workplace Survey and 1996 Household Travel Survey. NCTCOG is in the process of updating the trip distribution model component based on 2009 household survey data. The model uses a gamma-based gravity formulation technique to estimate the zone-to-zone interchange of trips. Iterations of the gravity model are required to ensure that the estimated number of zonal trips received equals the projected number of trip attractions generated by the Trip Generation Model.

Mode Choice Model

The Mode Choice Model determines the mode of travel and auto occupancy. Using the information regarding trip maker characteristics (e.g., income and auto ownership), roadway and transit system characteristics (e.g., in-vehicle time and out-of-vehicle time), and travel costs (e.g., auto operating costs, parking costs, and transit fare), the model splits the trips among all applicable modes of travel. The model uses a nested logic formulation for all the trip purposes. The "other" trips are assumed to be vehicle trips with one occupant and are not processed by the Mode Choice Model. The trip purposes of HBW, HNW, and NHB have nine choice sets: drive alone, two occupant shared ride, three + occupancy shared ride, walk access to bus service, auto access to bus service, walk access to rail service, auto access to rail service with transfer.

Roadway Assignment

The Roadway Assignment Model consists of simultaneous user equilibrium origin-destination assignments of drive alone, shared-ride, and truck vehicle classes for three separate time-of-day periods (6:30 a.m. – 8:59 a.m. Morning Peak, 3:00 p.m. – 6:29 p.m. Evening Peak, and the 18-Hour Off-peak). The drive alone vehicle class is kept separate from the shared-ride vehicle class so that HOV assignments can be performed as an integral part of an equilibrium assignment. Trucks are kept separate from the other vehicle classes so that the modeled truck volumes on all links can be tracked, and a separate value-of-time can be defined for them. A generalized cost path building technique is embedded within the model, in which the iterative calculation of zone-to-zone impedances are based on weighting factors applied to the capacity-restrained travel time, the distance (representing fuel cost), and tolls. As is standard with all User Equilibrium procedures, the TransCAD program uses an iterative process to achieve a convergent solution in which no travelers can improve their path by shifting routes. Since the results of the three time-of-day assignments can be combined to obtain total weekday modeled volumes, validation checks can be performed with either time-of-day or weekday observed traffic counts.

Speed Estimation Procedure

The link speed in the DFX is estimated by dividing the length of the link by its loaded travel time. The loaded travel time is the sum of the free-flow travel time, traffic congestion delay, and the delay caused by the traffic control devices (e.g., stop signs, yield signs, and signals). These three elements of the loaded travel time are all functions of the link volume to capacity ratio. These functions are programmed in the volume delay function (VDF) that is an essential input to the traffic assignment step. The result of the traffic assignment step is the final time-period-specific average loaded speeds for each of the 30,000 plus links in the roadway network. The VMT and vehicle hours of travel (VHT) for different time periods is included in the output as well to obtain an overall average speed (VMT/VHT) for any desired length of time.

The free-flow (uncongested) speed is defined as the speed limit. Free-flow speeds are an important link attribute since they are the base for calculating the congested (loaded) speeds in the Traffic Assignment step.

The VDF in the DFX uses a conical congestion delay form defined for each link functional classification, a non-linear delay curve based on the Webster's uniform delay formulation at signalized intersections, and a linear delay curve for the stop and yield controlled approaches.

The volume-delay functions were originally calibrated based on more than 8,000 traffic counts collected in 2004. These functions were later adjusted based on National Performance Management Research Data Set (NPMRDS) and 2014 time-of-day traffic counts collected at about 20,000 locations. NPMRDS contained travel time data by 5-minute interval.

Finally, all of the delay elements are added to the uncongested travel time (based on the freeflow speeds) to produce the total loaded travel time on each roadway segment. Appendix E contains speeds by county for each hour of the day. The resulting congested DFX county speeds, weighted by VMT, are listed in Exhibit 2.2.

Counties	2012	2020
Collin	36.00	34.46
Dallas	33.41	32.83
Denton	38.14	37.55
Ellis	50.79	52.78
Hood	46.96	45.84
Hunt	53.40	54.15
Johnson	46.63	46.18
Kaufman	51.85	52.66
Parker	51.10	51.41
Rockwall	43.50	43.33
Tarrant	36.09	36.25
Wise	53.98	53.89
12-County		
(weighted average)	36.82	36.50

Exhibit 2.2: Average Loaded Speeds (miles per hour)

Local Street VMT

The roadway network of the DFX does not contain the details of local (residential) streets; however, a VMT estimate is possible based on data provided by the travel model. Local street VMT is calculated for each county by multiplying the number of intrazonal trips by the intrazonal trip length and then adding the VMT from the zone centroid connectors. The temporal distribution is assumed to be the same as for non-local streets.

Adjustments

Seasonal, Daily, and Hourly Adjustments

The vehicle activity data used for this analysis is representative of summer and school season. Automatic Traffic Recorder (ATR) data collected by Texas Department of Transportation (TxDOT) is used to calculate the necessary conversions. ATR data, averaged over five years (2013-2017), was used.

DFX Counties Seasonal and Daily Adjustments

ATR data is organized into four-day types: Sunday, Midweek, Friday, and Saturday. To adjust the representative average school season weekday (ASWT) VMT from DFX to the specified day types in the school and summer season, ratios are calculated. The school portion of the ratio was estimated using traffic volumes recorded for February, April, May, September, and October months, and summer portion of the ratio utilizes traffic volumes recorded for June, July, and August months. Seasonal and daily adjustments for DFX counties are listed in Exhibit 2.3.

	County Type	Sunday	Midweek	Friday	Saturday
	Core (Dallas/Tarrant)	0.723	1.011	1.098	0.902
(ASWT to	Rural (Collin/Denton)	0.740	0.995	1.029	0.921
Summer)	Perimeter (Other Counties)	1.005	1.053	1.246	1.060
DEV Counting	Core (Dallas/Tarrant)	0.717	1.000	1.107	0.912
(ASWT to	Rural (Collin/Denton)	0.729	1.000	1.063	0.941
Schooly	Perimeter (Other Counties)	0.938	1.000	1.222	1.005

Exhibit 2.3: Seasonal/Daily Adjustment Factors for the DFW 12-County Modeling Domain

Hourly Adjustments

Daily volumes recorded for each of the four-day types described above are aggregated by hour to determine the percent of daily traffic occurring during each hour, representing hourly vehicle activity estimates. The DFX county midweek is further detailed by utilizing a time period volume for aggregation, as opposed to the daily volumes provided for the other day types. These time periods correspond to the time periods utilized in the DFX, where, AM Peak is 6:30 a.m. to 8:59 a.m., PM Peak is 3:00 p.m. to 6:29 p.m., and Off-peak represents all other hours of the day (12:00 a.m. to 6:29 a.m., 9:00 a.m. to 2:59 p.m., and 6:30 p.m. to 11:59 p.m.). Periods split by mid-hour times utilize an equal division of traffic recorded during the hour. The hourly adjustments for DFX counties for 2020 summer season are shown in Exhibit 2.4 as an example.

	Sunday	Midweek	Friday	Saturday
1	0.022	0.009	0.010	0.018
2	0.015	0.006	0.007	0.012
3	0.013	0.006	0.006	0.010
4	0.009	0.006	0.007	0.008
5	0.008	0.011	0.011	0.009
6	0.011	0.028	0.026	0.016
7	0.016	0.058	0.048	0.026
8	0.022	0.077	0.060	0.034
9	0.031	0.069	0.055	0.043
10	0.043	0.050	0.049	0.051
11	0.055	0.047	0.049	0.058
12	0.062	0.049	0.052	0.063
13	0.072	0.051	0.055	0.067
14	0.076	0.053	0.058	0.067
15	0.075	0.057	0.061	0.067
16	0.075	0.067	0.067	0.067
17	0.074	0.074	0.070	0.067
18	0.071	0.076	0.070	0.065
19	0.065	0.062	0.062	0.060
20	0.055	0.045	0.051	0.051
21	0.045	0.035	0.040	0.043
22	0.037	0.029	0.035	0.038
23	0.028	0.022	0.030	0.034
24	0.019	0.015	0.022	0.026

Exhibit 2.4: 2020 Summer Season Hourly Adjustment Factors for the DFW 12-County Modeling Domain

Model VMT Adjustments (HPMS vs. DFX)

Consistent with previous emission inventory practices, the DFW MPO used TxDOT's Highway Performance Monitoring System (HPMS) data to adjust modeled VMT to reflect the HPMS data for consistent reporting across the State. This adjustment is based on EPA's guidance for emission inventory development.

Prior to beginning the development of this emission inventory for the Attainment Demonstration State Implementation Plan, NCTCOG performed a validation on the DFX model in order to meet the transportation conformity requirements per the *Code of Federal Regulations*, which states, "Network-based travel models must be validated against observed counts (peak and off-peak, if possible) for a base year that is not more than 10 years prior to the date of the conformity determination" (40CFR §93.122(b)(1)(i). The previous DFX validation was performed in 2004, triggering an update to the validation. In order to be consistent with the planning assumptions incorporated in the *2014 Transportation Conformity*, NCTCOG incorporated the updated DFX model validation which is based on 2010 demographics. Exhibit 2.5 shows the calculation performed to develop the new HPMS adjustment factor, 0.9703, based on a comparison of 2010 VMT for HPMS and DFX.

Nonrecurring Congestion

According to a paper published in the January 1987 *Institute of Transportation Engineers'* journal by Jeffrey A. Lindley entitled <u>Urban Freeway Congestion: Quantification of the Problem</u> <u>and Effectiveness of Potential Solutions</u>, congestion due to traffic incidents accounts for twice as much as congestion from bottleneck situations. Congestion due to incidents, or nonrecurring congestion, causes emissions not represented in the VMT-based calculations of the base emissions. In order to include these effects, the delay caused by nonrecurring congestion is added to the freeway travel times and congestion delay due to bottlenecks to obtain an increased freeway travel time, which translates into reduced speed on freeway facilities. Reducing the freeway speeds increases volatile organic compounds (VOC) and oxides of nitrogen (NO_X) emissions by 4.9 percent, resulting in a factor of 1.049 for freeway VOC and NO_X emissions due to nonrecurring congestion. Arterial street emissions are not significantly affected by incidents because alternate routes on the arterial system are generally available; therefore, this factor is not applied to non-freeway type facilities.

Model VMT Adjustment Factor			
	2010 VMT		
HPMS (ASWT) ¹	165,292,084		
DFX (ASWT)	170,346,118		
HPMS/DFX Ratio	0.9703		

Exhibit 2.5: 2010 DFW and HPMS VMT Analysis

¹Annual Average Daily Traffic to ASWT conversion factor applied.

VMT Estimates

The 2012 and 2020 VMT estimates for different day types are shown in Exhibit 2.6 respectively for the 12-county area. Appendix E contains the VMT by county by day for each hour for all counties.

All Counties – 24-Hour Total								
Analysis Year	Season	Saturday	Sunday					
2012	Summer	197,098,030	216,490,271	180,133,825	149,303,203			
	School	193,945,845	217,546,531	180,306,951	146,099,810			
2020	Summer	240,775,598	264,855,700	220,071,735	182,620,993			
	School	236,789,931	265,978,460	220,141,930	178,642,069			

Exhibit 2.6: Vehicle Miles of Travel

CHAPTER 3: OFF-NETWORK ACTIVITY

To estimate the off-network (or parked vehicle) emissions using the mass per activity emissions rates, county-level analysis years 2012 and 2020 weekday estimates of the source hours parked (SHP), starts, source hours idling (SHI), and auxiliary power units (APU) hours are required by hour and vehicle (SHI and APU hours are for diesel combination long-haul trucks only). One of the main components of the SHP and starts off-network activity estimation is the analysis year county-level vehicle population. Appendix A contains the vehicle population and hourly SHP, starts, SHI, and APU hours.

Texas A&M Transportation Institute's (TTI) MOVESpopulationBuild module is used to convert Motor Vehicle Emissions Simulator version 2014b (MOVES2014b) based Texas Department of Motor Vehicles registration data for each county into 13 MOVES2014b source use type (SUT) population (or vehicle population). The county-level SHP, starts, SHI, and APU hours of offnetwork activity were developed using the "OffNetActCalc" utility and methodology provided by TTI.

Estimation of SHP

The first activity measure needed to estimate the off-network emissions using the mass per activity emissions rates are county-level analysis year weekday estimates of SHP by hour and vehicle type. For each hour, the county-level vehicle type SHP was calculated by taking the difference between the vehicle type total available hours minus the vehicle type vehicle hours travelled (VHT). Since this calculation was performed at the hourly level, the vehicle type total available hours was set equal to the vehicle type population. The Source Hours Operating (SHO) was calculated using the link vehicle miles of travel (VMT) and speeds and the VMT mixes by MOVES road-type category. Appendix A includes the 24-hour summaries of the county-level weekday estimates of SHP by hour and vehicle type for all analysis years.

Vehicle Type Total Available Hours

The vehicle type total available hours is typically calculated as the vehicle type population times the number of hours in the time period. Since this calculation was performed at the hourly level, the vehicle type total available hours for each activity scenario was set equal to the vehicle type vehicle population for the activity scenario year.

Vehicle Type VHT

To calculate the VHT for a given link, the VMT was allocated to each vehicle type using the Texas Department of Transportation district-level vehicle type VMT mixes by MOVES road-type category, which was then divided by the link speed to calculate the link vehicle type VHT. These VMT mixes are the same VMT mixes used to estimate emissions in the emissions estimation process. This SHO calculation was performed for each link in a given hour, aggregating the VHT to one value per vehicle type per hour.

Estimation of Starts

The second activity measure needed to estimate the off-network emissions using the mass per activity emissions rates are county-level analysis year weekday estimates of starts by hour and vehicle type. The vehicle type hourly default starts per vehicle were multiplied by the analysis year county-level vehicle type vehicle population to estimate the county-level vehicle type starts by hour. Appendix A includes the 24-hour summaries of the county-level vehicle type starts by hour for each analysis year.

For the hourly default starts per vehicle, the MOVES defaults were used. The MOVES activity output was used to estimate the hourly starts per vehicle for a MOVES weekday run by dividing the MOVES start output by the MOVES vehicle population output. These MOVES national default starts per vehicle do not vary by year, only by MOVES day type. For this weekday analysis, the MOVES national default "weekday" starts per vehicle were used.

Estimation of SHI and APU Hours

The remaining activity measures needed to estimate the off-network emissions using the mass per activity emissions rates are the hourly, county-level analysis year weekday heavy-duty diesel truck (SUT 62, fuel type 2 [CLhT_Diesel]) SHI and APU hours (hotelling activity). During hotelling, the truck's main engine is assumed to be in idling mode or its APU is in use. To calculate the SHI and APU hours activity, the hotelling hours activity were calculated, which was then allocated to the SHI and APU hours components.

The hotelling activity was based on information from a Texas Commission on Environmental Quality extended idling study, which produced 2017 winter weekday extended idling estimates for each Texas county and hotelling activity data from MOVES. Hotelling scaling factors (by analysis year) were applied to the base 2017 winter weekday hotelling values from the study to estimate the 24-hour hotelling by analysis year. Hotelling hourly factors were then applied to allocate the 24-hour hotelling by analysis year to each hour of the day. To ensure that valid hourly hotelling values are used, the hourly hotelling activity was compared to the CLhT_Diesel hourly SHP (i.e., hourly hotelling values cannot exceed the hourly SHP values). SHI and APU hours factors were then applied to the hotelling hours to produce the hourly SHI and APU hours of activity. Appendix A incudes the 24-hour summaries of the county-level estimates of hotelling hours, SHI, and APU hours for each analysis year.

Hotelling Activity Scaling Factors

To estimate the analysis year county-level 24-hour hotelling activity, county-level hotelling activity scaling factors were developed using the county-level 2017 winter weekday link-level VMT and speeds, the VMT mix (by MOVES road type), the county-level analysis year weekday link-level VMT and speeds, and the VMT mix (by MOVES road type). The 2017 winter weekday link-level VMT and speeds were developed using a process similar to the 2012 and 2020 weekday link-level VMT speed estimation. The vehicle type VMT mixes were the same VMT mixes used to estimate emissions in the emissions estimation process. For the base weekday vehicle type VMT mix, the 2017 weekday vehicle type VMT mix was used.

For each link in the 2017 winter weekday link-level VMT and speeds, the link VMT was allocated to CLhT_Diesel using the base weekday vehicle type VMT mix. This VMT allocation was performed for each link and hour in the 2017 winter weekday link-level VMT and speeds, with the individual link VMT aggregated by hour to produce the CLhT_Diesel hourly and 24- hour 2017 weekday VMT. Using a similar allocation process, the analysis year weekday CLhT_Diesel hourly and 24-hour VMT was calculated using the analysis year weekday link-level VMT and speeds and the analysis year vehicle type VMT mix. The county- level 24-hour hotelling activity scaling factors by analysis year were calculated by dividing the analysis year and day type CLhT_Diesel 24-hour VMT by the CLhT_Diesel 24-hour 2017 winter weekday VMT.

Hotelling Activity Hourly Factors

To allocate the analysis year weekday county-level 24-hour hotelling activity to each hour of the day, hotelling activity hourly factors were used. These hotelling activity hourly factors were calculated as the inverse of the analysis year weekday CLhT_Diesel hourly VMT fractions. The analysis year weekday CLhT_Diesel hourly VMT fractions were calculated using the hourly analysis year weekday CLhT_Diesel VMT. The hourly analysis year weekday CLhT_Diesel VMT was converted to hourly fractions, therefore creating analysis year weekday CLhT_Diesel hourly VMT fractions. The inverse of these hourly VMT fractions were calculated and the inverse for each hour was divided by the sum of the inverse hourly VMT fractions across all hours to calculate the county-level analysis year weekday hotelling activity hourly factors for each analysis year.

County-Level CLhT_Diesel Hotelling Activity by Hour Estimation

The four analysis years' weekday CLhT_Diesel hotelling activity by hour was calculated by multiplying the 24-hour 2017 winter weekday hotelling hours by the analysis year hotelling activity scaling factor and by the analysis year hotelling activity hourly factors. For each hour, the analysis year weekday hotelling activity was then compared to the analysis year weekday CLhT_Diesel SHP to estimate the final analysis year weekday hotelling activity by hour. If the analysis year weekday hotelling activity value was greater than the analysis year weekday SHP value, then the final analysis year weekday hotelling activity for that hour was set to the analysis year weekday hotelling activity for that hour was set to the base analysis year weekday hotelling activity for that hour was set to the base analysis year weekday hotelling activity

value. All calculations (scaling factors, hotelling activity hourly factors, and hotelling activity by hour calculations) were performed by county and analysis year (i.e., 10 hotelling activity scaling factors were calculated per analysis year).

County-Level CLhT_Diesel SHI and APU Hours Estimation

Weekday hourly county-level hotelling activity for all analysis years was then allocated to SHI and APU hours activity components using the aggregate extended idle mode and APU mode fractions. For each hour, the analysis year weekday hotelling activity was multiplied by the SHI fraction to calculate the analysis year weekday hourly SHI activity and by the APU fraction to calculate the analysis year weekday hourly APU activity.

The aggregate SHI and the APU fractions were estimated using model year travel fractions (based on source type age distribution and relative mileage accumulation rates used in the MOVES runs) and the MOVES default hotelling activity distribution (i.e., a bi-modal distribution of 1.0 SHI prior to the 2010 model year and a 0.7/0.3 SHI/APU activity allocation for 2010 and later model years). The associated travel fractions were applied to the appropriate extended idle and APU operating mode fractions (of the hotelling operating mode distribution) by model year and summed within each mode to estimate the aggregate (across model years) individual SHI and APU fractions (which sum to 1.0).

CHAPTER 4: EMISSION FACTOR ESTIMATION PROCEDURE

MOVES2014B Model and Input Parameters

The Environmental Protection Agency's (EPA) Motor Vehicle Emission Simulator version 2014b (MOVES2014b) was used to develop 2012 and 2020 vehicle emission factors for this analysis. The emission factors are one component in the equation to determine emissions from the region's on-road vehicles. MOVES2014b parameters are listed below in Exhibits 4.1 through 4.5 with the appropriate data source and/or methodology applied. Information listed applies to all counties, unless otherwise specified. Referenced files identifying specific local data are included in Appendix A. MOVES2014b input files utilizing these parameters and data for each county are included in Appendix B.

Command	Input Parameter Values and Molecular Formulas	Description
Pollutant	VOC, CO, NO, NO ₂ , HONO, NO _X , CO ₂ , SO ₂ , CH ₄ , NH ₃ , PM _{2.5} , OC, EC, NonECPM, NCOM, PM ₁₀ , NO ₃ , NH ₄	Volatile Organic Compounds (VOC), Carbon Monoxide (CO), Nitrogen Oxide (NO), Nitrogen Dioxide (NO ₂) Nitrous Acid (HONO), Oxides of Nitrogen (NO _X), Carbon Dioxide (CO ₂), Sulfur Dioxide (SO ₂), Methane (CH ₄), Ammonia (NH ₃), Particulate Matter size 2.5 or less (PM _{2.5}) – total, brake wear, tire wear, Organic Carbon (OC), Elemental Carbon (EC), sulfate, composite – nonECPM, and non-carbon organic matter(NCOM), Particulate Matter size 10 (PM ₁₀) – total, brake wear, tire wear, Nitrate (NO ₃), and Ammonium (NH ₄).

Exhibit 4.1: MOVES2014b Modeled Pollutants

Exhibit 4.2: MOVES2014b External Conditions

Command	Input Parameter Values	Description			
MOVES Model Version	MOVES2014b	This version was released in August 2018			
Calendar Year	2012, 2020	Base-Case and Attainment Demonstration Years			
Evaluation Month	7	Representing summer season			
Minimum/Maximum Temperature	N/A	Hourly Temperatures used in the Inputs			
Hourly Temperatures	Average Summer (June, July, and August)	County-specific, provided by the Texas Commission on Environmental Quality (TCEQ)			
Relative Humidity	Average Summer (June, July, and August)	County-specific, provided by the TCEQ			
Barometric Pressure	Average Summer (June, July, and August)	County-specific, provided by the TCEQ			

Input Parameter	Description	Source		
Source Type Population	Input number of vehicles in geographic area to be modeled for each vehicle and apply the appropriate growth factor for the future analysis year (2020). NCTCOG input parameter sheet is used to convert TxDMV registration data for each county into 13 MOVES SUT.	2012 and 2014 TxDMV registration data		
Source Type Age Distribution	Input provides distribution of vehicle counts by age for each calendar year and vehicle type. TxDMV registration data used to estimate age distribution of vehicle types up to 30 years. Distribution of Age fractions should sum up to 1.0 for all vehicle types for each analysis year.	2012 and 2014 TxDMV registration data. MOVES2014b default used for buses		
Vehicle Type VMT	County-specific vehicle miles of travel (VMT) is distributed to Highway Performance Monitoring S (HPMS) Vehicle types.	DFX Output		
Average Speed Distribution	Input average speed data specific to vehicle type, road type, and time of day/type of day into 16 speed bins. Sum of speed distribution to all speed bins for each road type, vehicle type, and time/day type is 1.0.	NCTCOG DFX Output		
Road Type Distribution (VMT Fractions)	Input county specific VMT by road type. VMT fraction distributed between the road type and must sum to 1.0 for each source type.	NCTCOG DFX Output		
Ramp Fraction	Input county specific fraction of ramp driving time on rural and urban restricted roadway type.	NCTCOG DFX Output		
Fuel Supply	Input to assign existing fuels to counties, months, and years, and to assign the associated market share for each fuel.	TCEQ, EPA Fuel Surveys and default MOVES2014b input where local data unavailable		
Meteorology	County Specific data on temperature, humidity, and barometric pressure, and other data, as agreed upon and provided by the TCEQ	Local data from the TCEQ		
Fuel Formulation	Fuel Input county specific fuel properties in the MOVES2014b Formulation database.			

Exhibit 4.3: MOVES2014b Input Parameters and Source

Inspection and Maintenance Coverage	Input inspection and maintenance (I/M) coverage record for each combination of pollutants, process, county, fuel type, regulatory class and model year are specified using this input.	DFW nine-county I/M data as defined by, 30 TAC ¹ , Part 1, Chapter 114, Subchapter C
Fuel Engine Fraction / Diesel Fraction (AVFT)	Input fuel engine fractions (i.e. Gasoline vs. Diesel Engines types in the vehicle population) for all vehicle types.	2012 and 2014 TxDMV registration data MOVES2014b default used for light duty vehicles and buses

2012									
	Collin, Dallas, D	enton, Ellis, Johns	on, Kaufman, Park	er, Rockwall, and	Tarrant I/M Da	ta*			
I/M Program ID	20	20 21 22 23 24							
Pollutant Process ID	101, 102, 201, 202, 301, 302	101, 102, 201, 202, 301, 302	101, 102, 201, 202, 301, 302	112	112	MOVES2014b			
Source Use Type	21, 31, 32	21, 31, 32	52, 54	21, 31, 32	21, 31, 32	MOVES2014b			
Begin Model Year	1996	1988	1988	1988	1996	Annual testing; program specifications			
End Model Year	2010	1995	2010	1995	2010	Annual testing; program specifications			
Inspect Frequency	1	1	1	1	1	Annual testing; program specifications			
Test Standards Description	Exhaust OBD Check	ASM 2525/ 5015 Phase-in Cut points	Two-mode, 2500 RPM/Idle Test	Evaporative Gas Cap Check	Evaporative Gas Cap and OBD Check	Annual testing; program specifications			
I/M Compliance	Expected compliance (%) - MOVES2014b Default								

Exhibit 4.4: MOVES2014b I/M Descriptive Inputs for Subject Counties

Source: TCEQ

OBD – On-board Diagnostic; ASM – Acceleration Simulation Mode; RPM – Revolutions Per Minute

*Wise County does not have an I/M program

^http://www.epa.gov/otaq/models/moves/documents/420b15007.pdf

2020

Collin, Dallas, Denton, Ellis, Johnson, Kaufman, Parker, Rockwall, and Tarrant I/M Data*

I/M Program ID	20	22	24	MOVES2014b
Pollutant Process ID	101, 102, 201, 202, 301, 302	101, 102, 201, 202, 301, 302	112	MOVES2014b
Source Use Type	21, 31, 32	52, 54	21, 31, 32	MOVES2014b
Begin Model Year	1996	1990	1996	Annual testing; program specifications
End Model Year	2018 2018 2018		2018	Annual testing; program specifications
Inspect Frequency	1	1	1	Annual testing; program specifications
Test Standards Description	Exhaust OBD Check	Two-mode, 2500 RPM/Idle Test	Evaporative Gas Cap and OBD Check	Annual testing; program specifications
I/M Compliance	Expected compliance (%) - MOVES2014b Default			

Source: TCEQ

OBD – On-board Diagnostic; ASM – Acceleration Simulation Mode; RPM – Revolutions Per Minute

*Wise County does not have an I/M program

^http://www.epa.gov/otaq/models/moves/documents/420b15007.pdf

Exhibit 4.5: MOVES2014b Fuel Properties

	(for A	2011 Analysis Year 2	2012)	2018 and later (for Analysis Year 2020)			
Fuel Type	Gase	oline	Diesel	Gasoline		Diesel	
Counties	Core	Perimeter	All	Core	Perimeter	All	
fuelformulationID	10707	10727	30572	18724	18734	30011	
fuelsubtypeID	12	12	20	12	12	20	
RVP	6.99	7.39	0	7.00	7.80	0	
sulfurLevel	24.80	29.27	5.72	10.00	10.00	11.00	
ETOHVolume	9.70	9.78	0	9.67	9.66	0	
MTBEVolume	0	0	0	0	0	0	
ETBEVolume	0	0	0	0	0	0	
TAMEVolume	0	0	0	0	0	0	
aromaticContent	14.48	25.23	0	14.74	25.35	0	
olefinContent	11.79	11.16	0	10.74	8.33	0	
benzeneContent	0.48	0.96	0	0.46	0.61	0	
e200	47.19	49.08	0	49.21	49.45	0	
e300	85.22	81.36	0	85.13	82.68	0	
VolToWtPercentOxy	0.3653	0.3653	0	0.3653	0.3653	0	
BioDieselEsterVolume	0	0	0	0	0	0	
CetaneIndex	0	0	0	0	0	0	
PAHContent	0	0	0	0	0	0	
Т50	209.44	204.74	0	202.52	203.73	0	
Т90	325.41	334.89	0	325.77	327.68	0	

Source: TTI

Area Specific Calculations and Procedures

SourceUse Type DistributionSourceUse type age distributions are calculated from the TxDMV vehicle registration data. July data sets of 2012 and 2014 are utilized for light- and heavy-duty vehicle classes. MOVES2014b default values are used for bus categories. Light-duty registration data for Collin, Dallas, Denton, Ellis, Hood, Hunt, Johnson, Kaufman, Parker, Rockwall, Tarrant, and Wise Counties are weighted for commute patterns with the County-to-County Worker Flow data from the 2013 five-year American Community Survey. Exhibit 4.6 identifies the percentages applied for this weighted adjustment. The TTI methodology is applied to the heavy-duty vehicle data for developing registration for all heavy-duty vehicles. These files are included in Appendix B.

Resident	County of Employment											
County	Collin	Dallas	Denton	Ellis	Hood	Hunt	Johnson	Kaufman	Parker	Rockwall	Tarrant	Wise
Collin	65.4%	10.2%	5.1%	0.3%	0.1%	4.2%	0.2%	1.0%	0.0%	7.6%	0.9%	0.0%
Dallas	19.1%	66.0%	10.2%	10.7%	0.9%	3.9%	1.3%	15.8%	1.0%	23.6%	7.7%	0.7%
Denton	11.5%	7.9%	75.6%	0.4%	0.3%	0.0%	0.2%	0.7%	0.9%	0.6%	3.3%	3.1%
Ellis	0.2%	1.8%	0.2%	79.4%	0.2%	0.1%	1.4%	0.7%	0.1%	0.0%	0.6%	0.2%
Hood	0.0%	0.1%	0.0%	0.1%	84.0%	0.0%	2.3%	0.0%	2.4%	0.0%	0.5%	0.4%
Hunt	0.8%	0.4%	0.1%	0.1%	0.0%	84.3%	0.0%	4.4%	0.0%	9.4%	0.0%	0.0%
Johnson	0.0%	0.3%	0.3%	3.5%	3.2%	0.0%	76.2%	0.0%	1.4%	0.2%	3.2%	0.7%
Kaufman	0.3%	1.6%	0.1%	0.7%	0.1%	1.2%	0.0%	72.6%	0.0%	3.6%	0.1%	0.0%
Parker	0.0%	0.1%	0.1%	0.1%	4.3%	0.0%	0.5%	0.0%	77.4%	0.0%	2.6%	5.9%
Rockwall	0.7%	1.2%	0.1%	0.1%	0.5%	5.6%	0.1%	3.7%	0.0%	53.9%	0.1%	0.1%
Tarrant	2.0%	10.3%	7.4%	4.6%	6.2%	0.4%	17.5%	1.1%	14.1%	1.0%	80.3%	10.7%
Wise	0.1%	0.1%	0.8%	0.0%	0.2%	0.2%	0.3%	0.0%	2.5%	0.0%	0.8%	78.2%

Exhibit 4.6: County to County Worker Flow

Source: 2013 5-year American Community Survey.

Fuel Engine Fraction

Diesel fractions for heavy-duty vehicle categories utilized 12-county summed July registration data for modeling 2012 and 2020 analysis years. July 2012 registration data is used for modeling the 2012 analysis year and July 2014 registration data is used for modeling the 2020 analysis year. Light-duty and bus categories utilize MOVES2014b default values. All diesel fraction files, included in Appendix B, list specific data used for this analysis.

MOVES2014b Emission Factors

MOVES2014b emission factors are reported in Appendix C.

Adjustments

Adjustments are applied to the emission factors in a post-process step. Texas Low Emission Diesel (TxLED) NO_x Adjustment is applied to the emission factors. VMT Mix adjustment is applied simultaneously with the emission calculation procedure discussed in Chapter 5.

TxLED NO_x Adjustment

NO_X emission factors for diesel vehicle classes are adjusted to apply the federal low emission diesel program. Exhibit 4.7 lists the appropriate adjustment for each vehicle class.

SourceUse Type	Adjustment Factors				
	2012	2020			
Passenger Car	0.9411	0.9508			
Passenger Truck	0.9467	0.9500			
Light Commercial Truck	0.9434	0.9479			
Intercity Bus	0.9416	0.9440			
Transit Bus	0.9421	0.9449			
School Bus	0.9421	0.9443			
Refuse Truck	0.9440	0.9477			
Single Unit Short-haul Truck	0.9496	0.9514			
Single Unit Long-haul Truck	0.9498	0.9514			
Motor Home	0.9441	0.9467			
Combination Short-haul Truck	0.9456	0.9490			
Combination Long-haul Truck	0.9445	0.9488			

Exhibit 4.7: TxLED NO_x Adjustments

Source: TCEQ

Vehicle Miles of Travel Mix (VMT Mix)

VMT Mix is applied to the emission factors in a post-process methodology. The VMT mix enables assignment of emission factors by vehicle type to a total volume to calculate emissions on a link or functional class. VMT mix is estimated for rural and urban freeways, arterials, collectors and high occupancy vehicle lanes for three time periods.

Vehicle counts reported in the TxDOT Vehicle Classification Report provide a base for the distribution of vehicles by type and functional class for the freeway, arterial, and collector VMT Mixes. The number of vehicles in each of the 12 axle-based categories are combined into intermediate groups, and then disaggregated into MOVES2014b Source use types by applying appropriate TxDMV registration data, and/or MOVES2014b defaults. Exhibit 4.8 outlines this process. For each functional class, the values are aggregated across the total vehicles to determine the fraction of vehicles from each class. Motorcycles are allocated as 0.1 percent for each functional class, subtracted from the Light-duty Gasoline Vehicles category.

This "temporary" VMT mix calculation is then redistributed using local truck and non-truck splits identified by the DFX model. This process is performed for each of the three functional classes and three time periods, where AM peak is 6:30 a.m. – 8:59 a.m., PM peak is 3:00 p.m. – 6:29 p.m., and Off-peak represents all other hours of the day. Motorcycles, light-duty vehicles, and two-axle light-duty trucks are classified as non-trucks. Trucks and heavy-duty vehicles with three axles or more, including buses, are defined as trucks.

Axle C	e-based Vehicle Classifications	Intermediate Groups/HPMSVtypeID		Detailed Groups			
с	Passenger Vehicles			Passenger Car	Pass Pass Mote	enger Gasoline Vehicle enger Diesel Vehicle orcycle^	
D	2 Axle, 4 Tire	Passenger Vehicles	Light-duty Vehicles (25)	Passenger Truck	Pass Pass	enger Gasoline Truck enger Gasoline Truck	
F	Single Unit			Commercial Truck	Light	Commercial Gasoline Truck	
в	Buses	Bus	Buses (40)	School Bus	Gasc Diesc Gasc	oline School Bus* el School Bus* oline Transit Bus*	
		200		Transit Bus Diesel Intercity B	Diese Diese	el Transit Bus*	
SU2	2 Axle, 6 Tire Single Unit			Cingle Unit Short		* Single Unit Short-haul	
SU3	3 Axle, Single Unit	Heavy	Single Unit	haul Truck		Single Unit Short-haul Diesel	
SU4	4+ Axle, Single Unit	Duty Trucks	Heavy-duty Vehicles (50)	Single Unit Long-haul Truck		Single Unit Long-haul Gasoline Truck*	
SE4	3 or 4 Axle, Single Trailer					Single Unit Long-haul Diesel Truck*	
SE5	5 Axle, Single Trailer					Combination Short-haul	
SE6	6+ Axle, Single Trailer	Нерули	Combination	Combination Sho haul Truck	ort-	Gasoline Truck*	
SD5	5 Axle, Multi Trailer	Duty	Heavy-duty Vehicles (60)			Combination Short-haul Diesel Truck*	
SD6	6 Axle, Multi Trailer			Combination Lor	าย-hลบ	l Diesel Truck*	
SD7	7+ Axle, Multi Trailer						

Exhibit 4.8: Vehicle Classification Process

Source: Dallas/Fort Worth Ozone Nonattainment Area SIP Support, 2003, TTI

* Categories calculated using MOVES2014b defaults

^ Motorcycles are allocated as 0.1 percent for each functional class, subtracted from the Light-duty

CHAPTER 5: EMISSION CALCULATION

Emissions estimates are calculated using *"TTI emissions inventory estimation utilities using moves: movesutl",* developed by the Texas A & M Transportation Institute. This software combines vehicle activity and emission factors to create emission estimates.

Exhibit 5.1 outlines the emission calculation modeling process used to calculate the emissions estimates for the Dallas-Fort Worth ozone nonattainment area.

Exhibit 5.1: MOVES2014b Emission Calculation Modeling Process

CHAPTER 6: SUMMARY OF VEHICLE MILES OF TRAVEL, SPEED, AND EMISSIONS

Vehicle Miles of Travel Estimates

The final county emission estimates for school and summer season and for each analysis year are summarized in Exhibit 6.1. Appendix E contains the summarized vehicle miles of travel (VMT) estimates by the analysis year and time-of-day (TOD) for all counties.

Speed Estimates

The final county emission estimates for school and summer season and for each analysis year are summarized in Exhibit 6.2. Appendix E contains the summarized speeds by the analysis year and TOD for the counties.

Emission Estimates

The final county emission estimates for school and summer season and for each analysis year are summarized in Exhibit 6.3. Appendix E contains the tab summary of VMT, speeds, and emissions for all counties by analysis year, control scenarios, TOD, functional class, and vehicle type.

	2012 Emissions Inventory								
	VMT								
		Summer Seaso	n						
Counties	Midweek	Friday	Saturday	Sunday					
Collin	22,003,297	23,739,855	19,736,432	15,832,376					
Dallas	73,789,867	80,030,346	65,921,092	52,866,053					
Denton	18,439,604	19,697,736	16,666,299	13,376,758					
Ellis	6,941,036	8,208,548	6,987,233	6,620,290					
Hood	1,872,143	2,213,900	1,884,429	1,785,473					
Hunt	4,643,551	5,491,438	4,674,334	4,428,863					
Johnson	5,030,860	5,949,536	5,064,320	4,798,362					
Kaufman	5,863,362	6,934,027	5,902,309	5,592,345					
Parker	5,040,341	5,960,527	5,073,507	4,807,085					
Rockwall	2,397,278	2,557,156	2,169,060	1,741,070					
Tarrant	47,533,227	51,516,654	42,487,744	34,074,794					
Wise	3,543,463	4,190,549	3,567,065	3,379,734					
Total	197,098,030	216,490,271	180,133,825	149,303,203					

Exhibit 6.1: Vehicle Miles of Travel (Miles/Day) Estimates for the DFW 12-County Modeling Domain

2012 Emissions Inventory						
School Season						
Counties	Midweek	Friday	Saturday	Sunday		
Collin	21,821,679	24,010,199	20,001,573	15,678,042		
Dallas	73,055,171	80,732,533	66,734,134	52,386,161		
Denton	18,346,856	20,021,046	16,924,528	13,229,586		
Ellis	6,589,104	8,049,715	6,623,062	6,179,791		
Hood	1,777,220	2,171,061	1,786,213	1,666,672		
Hunt	4,408,109	5,385,179	4,430,712	4,134,175		
Johnson	4,775,779	5,834,415	4,800,369	4,479,091		
Kaufman	5,566,072	6,799,855	5,594,683	5,220,244		
Parker	4,784,780	5,845,192	4,809,077	4,487,231		
Rockwall	2,386,327	2,600,989	2,203,302	1,721,605		
Tarrant	47,070,953	51,986,883	43,018,149	33,762,357		
Wise	3,363,797	4,109,463	3,381,150	3,154,854		
Total	193,945,845	217,546,531	180,306,951	146,099,810		

2020 Emissions Inventory VMT					
		Summer Seaso	n		
Counties	Midweek	Friday	Saturday	Sunday	
Collin	28,487,874	30,729,893	25,557,002	20,501,809	
Dallas	87,022,573	94,389,244	77,738,095	62,342,547	
Denton	22,672,185	24,425,167	20,359,650	16,333,640	
Ellis	8,815,744	10,425,607	8,874,437	8,408,384	
Hood	2,152,577	2,545,438	2,166,580	2,052,814	
Hunt	5,811,941	6,873,147	5,850,440	5,543,206	
Johnson	6,367,351	7,530,086	6,409,706	6,073,093	
Kaufman	7,671,899	9,072,821	7,722,885	7,317,310	
Parker	6,628,052	7,838,108	6,671,700	6,321,348	
Rockwall	3,000,807	3,213,438	2,707,106	2,172,497	
Tarrant	57,824,382	62,703,608	51,665,148	41,433,757	
Wise	4,320,214	5,109,143	4,348,983	4,120,589	
Total	240,775,598	264,855,700	220,071,735	182,620,993	

Exhibit 6.1: Vehicle Miles of Travel (Miles/Day) Estimates for the DFW 12-County Modeling Domain (continued)

2020 Emissions Inventory						
VMT School Season						
Counties	Midweek	Friday	Saturday	Sunday		
Collin	28,254,640	31,083,013	25,901,439	20,301,421		
Dallas	86,153,976	95,213,860	78,695,645	61,777,243		
Denton	22,496,000	24,721,558	20,639,492	16,171,328		
Ellis	8,368,757	10,223,874	8,411,905	7,848,910		
Hood	2,043,434	2,496,183	2,053,659	1,916,224		
Hunt	5,517,256	6,740,153	5,545,515	5,174,372		
Johnson	6,044,505	7,384,381	6,075,636	5,669,006		
Kaufman	7,282,910	8,897,265	7,320,372	6,830,434		
Parker	6,291,988	7,686,443	6,323,975	5,900,743		
Rockwall	2,983,328	3,262,172	2,747,684	2,149,263		
Tarrant	57,251,972	63,259,277	52,304,289	41,056,711		
Wise	4,101,165	5,010,281	4,122,317	3,846,415		
Total	236,789,931	265,978,460	220,141,930	178,642,069		

2012 Emissions Inventory Speed Estimates Summer Season					
	Midweek	Friday	Saturday	Sunday	
Collin	36.04	36.75	39.01	40.09	
Dallas	35.92	36.50	39.16	40.41	
Denton	37.10	37.68	39.92	41.29	
Ellis	45.46	44.27	45.97	45.35	
Hood	41.59	41.01	42.39	41.92	
Hunt	46.58	45.72	47.13	46.65	
Johnson	42.13	41.11	42.67	42.11	
Kaufman	46.15	45.41	46.80	46.31	
Parker	44.17	43.70	44.92	44.51	
Rockwall	40.33	40.77	42.81	43.81	
Tarrant	36.89	37.58	39.83	40.89	
Wise	45.68	44.94	46.69	46.06	
Average	41.51	41.29	43.11	43.28	

Exhibit 6.2: Speed	(miles per hour) Estimates for the DFW 12-Count	y Modeling Domain

2012 Emissions Inventory Speed Estimates School Season						
	Midweek	Friday	Saturday	Sunday		
Collin	36.20	36.63	38.90	40.15		
Dallas	36.11	36.37	39.04	40.47		
Denton	37.21	37.43	39.73	41.37		
Ellis	45.89	44.52	46.40	46.00		
Hood	41.95	41.20	42.73	42.41		
Hunt	46.92	45.91	47.46	47.15		
Johnson	42.52	41.33	43.05	42.69		
Kaufman	46.52	45.60	47.14	46.83		
Parker	44.47	43.85	45.21	44.93		
Rockwall	40.47	40.66	42.71	43.86		
Tarrant	37.06	37.46	39.73	40.95		
Wise	46.19	45.19	47.14	46.73		
Average	41.79	41.35	43.27	43.63		

2020 Emissions Inventory Speed Estimates Summer Season						
	Midweek	Friday	Saturday	Sunday		
Collin	35.23	36.72	39.18	40.37		
Dallas	35.74	36.51	39.84	41.41		
Denton	37.07	38.23	41.03	42.42		
Ellis	46.43	44.51	46.90	46.00		
Hood	40.55	40.02	41.80	41.16		
Hunt	46.61	45.26	47.08	46.43		
Johnson	41.62	39.69	41.95	41.11		
Kaufman	45.35	42.80	45.83	44.66		
Parker	43.75	42.53	44.46	43.76		
Rockwall	40.19	40.70	42.91	44.04		
Tarrant	37.10	37.79	40.50	41.79		
Wise	44.40	42.11	44.88	43.83		
Average	41.17	40.57	43.03	43.08		

Exhibit 6.2: Speed (miles per hour) Estimates for the DFW 12-County Modeling Domain (continued)

2020 Emissions Inventory Speed Estimates						
School Season						
	Midweek	Friday	Saturday	Sunday		
Collin	35.43	36.58	39.05	40.43		
Dallas	35.98	36.34	39.68	41.49		
Denton	37.28	38.07	40.89	42.49		
Ellis	47.03	44.86	47.51	46.94		
Hood	41.09	40.27	42.25	41.83		
Hunt	47.06	45.52	47.54	47.11		
Johnson	42.15	40.03	42.52	41.98		
Kaufman	46.13	43.26	46.62	45.88		
Parker	44.23	42.80	44.94	44.49		
Rockwall	40.33	40.56	42.79	44.10		
Tarrant	37.29	37.64	40.37	41.85		
Wise	45.11	42.53	45.61	44.93		
Average	41.59	40.70	43.31	43.63		

2012 Emissions Inventory Oxides of Nitrogen (NO _x) (tons/day) Summer Season					
	Midweek	Friday	Saturday	Sunday	
Collin	21.45	21.56	15.82	13.88	
Dallas	78.47	79.15	57.52	50.21	
Denton	20.31	20.05	14.48	12.74	
Ellis	12.02	13.06	8.75	8.96	
Hood	2.45	2.73	2.06	2.06	
Hunt	11.65	12.91	8.66	8.90	
Johnson	6.98	7.66	5.43	5.50	
Kaufman	9.17	9.93	6.86	6.95	
Parker	8.96	9.57	6.36	6.51	
Rockwall	3.39	3.36	2.40	2.14	
Tarrant	49.31	49.76	36.56	32.09	
Wise	6.58	7.20	4.87	4.94	
Total	230.74	236.95	169.75	154.89	

Exhibit 6.3: Emission Estimates for the DFW 12-County Modeling Domain

2012 Emissions Inventory Oxides of Nitrogen (NO _x) (tons/day) School Season							
	Midweek Friday Saturday Sunday						
Collin	21.31	21.81	16.00	13.77			
Dallas	77.77	79.79	58.11	49.85			
Denton	20.24	20.39	14.68	12.63			
Ellis	11.45	12.82	8.33	8.42			
Hood	2.34	2.68	1.97	1.94			
Hunt	11.09	12.67	8.23	8.34			
Johnson	6.67	7.52	5.19	5.19			
Kaufman	8.75	9.76	6.53	6.53			
Parker	8.55	9.41	6.06	6.13			
Rockwall	3.38	3.42	2.43	2.12			
Tarrant	48.90	50.17	36.92	31.86			
Wise	6.28	7.08	4.63	4.65			
Total	226.73	237.52	169.10	151.42			

2020 Emissions Inventory Oxides of Nitrogen (NO _x) (tons/day) Summer Season					
	Midweek	Friday	Saturday	Sunday	
Collin	8.58	8.58	6.37	5.68	
Dallas	31.17	31.07	22.47	20.02	
Denton	7.92	7.81	5.63	5.05	
Ellis	5.27	5.63	3.75	3.86	
Hood	0.83	0.91	0.72	0.72	
Hunt	3.78	4.14	2.84	2.90	
Johnson	2.73	2.98	2.15	2.18	
Kaufman	3.99	4.24	2.91	2.96	
Parker	4.76	5.05	3.39	3.45	
Rockwall	1.54	1.51	1.07	0.97	
Tarrant	19.93	19.97	14.80	13.24	
Wise	2.39	2.60	1.77	1.81	
Total	92.88	94.49	67.87	62.82	

2020 Emissions Inventory Oxides of Nitrogen (NO _x) (tons/day)						
Midweek Friday Saturday Sunday						
Collin	8.53	8.67	6.43	5.63		
Dallas	30.91	31.30	22.67	19.89		
Denton	7.87	7.90	5.69	5.01		
Ellis	5.03	5.53	3.58	3.64		
Hood	0.80	0.90	0.70	0.68		
Hunt	3.61	4.06	2.71	2.73		
Johnson	2.61	2.93	2.07	2.07		
Kaufman	3.84	4.18	2.78	2.79		
Parker	4.54	4.97	3.23	3.25		
Rockwall	1.53	1.53	1.08	0.96		
Tarrant	19.77	20.11	14.94	13.15		
Wise	2.28	2.55	1.69	1.70		
Total	91.33	94.65	67.57	61.51		

2012 Emissions Inventory Volatile Organic Compounds (VOC) (tons/day) Summer Season							
	Midweek Friday Saturday Sunday						
Collin	10.13	10.27	9.37	8.83			
Dallas	35.43	36.06	32.41	30.33			
Denton	8.47	8.54	7.76	7.29			
Ellis	3.31	3.54	3.08	3.06			
Hood	1.11	1.17	1.08	1.07			
Hunt	2.44	2.65	2.26	2.25			
Johnson	2.68	2.85	2.59	2.57			
Kaufman	2.43	2.60	2.26	2.23			
Parker	2.35	2.49	2.11	2.10			
Rockwall	1.40	1.41	1.26	1.19			
Tarrant	24.40	24.78	22.69	21.46			
Wise	1.85	1.99	1.66	1.66			
Total	95.99	98.36	88.54	84.04			

Exhibit 6.3: Emission Estimates for the DFW 12-County Modeling Domain (continued)

2012 Emissions Inventory Volatile Organic Compounds (VOC) (tons/day) School Season						
Midweek Friday Saturday Sunday						
Collin	10.09	10.32	9.41	8.81		
Dallas	35.26	36.22	32.56	30.24		
Denton	8.45	8.61	7.80	7.27		
Ellis	3.23	3.50	3.00	2.97		
Hood	1.09	1.16	1.06	1.05		
Hunt	2.37	2.62	2.20	2.17		
Johnson	2.63	2.83	2.54	2.50		
Kaufman	2.36	2.57	2.19	2.15		
Parker	2.29	2.47	2.06	2.04		
Rockwall	1.40	1.42	1.27	1.19		
Tarrant	24.31	24.87	22.78	21.41		
Wise	1.80	1.96	1.62	1.60		
Total	95.27	98.56	88.50	83.39		

2020 Emissions Inventory Volatile Organic Compounds (VOC) (tons/day) Summer Season							
	Midweek Friday Saturday Sunday						
Collin	6.09	6.13	5.76	5.53			
Dallas	19.74	19.95	18.49	17.68			
Denton	5.02	5.05	4.71	4.53			
Ellis	1.80	1.90	1.69	1.69			
Hood	0.63	0.65	0.62	0.62			
Hunt	1.23	1.30	1.17	1.16			
Johnson	1.52	1.59	1.49	1.48			
Kaufman	1.32	1.40	1.24	1.23			
Parker	1.45	1.52	1.31	1.30			
Rockwall	0.80	0.80	0.73	0.71			
Tarrant	14.38	14.53	13.69	13.18			
Wise	0.94	0.99	0.87	0.87			
Total	54.90	55.83	51.76	49.97			

2020 Emissions Inventory Volatile Organic Compounds (VOC) (tons/day)							
School Season							
	Midweek Friday Saturday Sunday						
Collin	6.07	6.15	5.78	5.52			
Dallas	19.67	20.02	18.55	17.65			
Denton	5.00	5.07	4.73	4.53			
Ellis	1.77	1.88	1.66	1.65			
Hood	0.62	0.65	0.61	0.61			
Hunt	1.20	1.29	1.15	1.13			
Johnson	1.50	1.58	1.47	1.45			
Kaufman	1.30	1.39	1.21	1.19			
Parker	1.41	1.51	1.28	1.27			
Rockwall	0.80	0.81	0.74	0.71			
Tarrant	14.34	14.57	13.72	13.16			
Wise	0.92	0.98	0.85	0.84			
Total	54.60	55.89	51.74	49.70			

2012 Emissions Inventory Carbon Monoxide (CO) (tons/day) Summer Season						
Midweek Friday Saturday Sunday						
Collin	129.08	137.13	119.09	101.01		
Dallas	476.29	506.63	441.98	374.85		
Denton	103.30	108.93	96.04	81.54		
Ellis	40.45	47.57	41.81	40.60		
Hood	13.40	15.53	13.71	13.35		
Hunt	29.11	34.39	30.65	29.43		
Johnson	32.30	37.63	33.29	32.45		
Kaufman	33.09	39.03	34.19	33.11		
Parker	31.74	36.76	32.48	31.51		
Rockwall	15.23	16.11	14.25	12.19		
Tarrant	310.41	330.03	288.74	246.62		
Wise	22.57	26.35	23.05	22.37		
Total	1236.98	1336.11	1169.29	1019.02		

Exhibit oldi Enhoused Estimates for the Bill at Economy modeling Bonnan (continued)	Exhibit 6.3: Emission Estimates for the DFW 12-Count	ty Modeling Domain (continued)
---	--	--------------------------------

2012 Emissions Inventory Carbon Monoxide (CO) (tons/day) School Season						
Midweek Friday Saturday Sunday						
Collin	128.17	138.44	120.38	100.28		
Dallas	472.60	510.07	446.14	372.29		
Denton	102.88	110.54	97.29	80.87		
Ellis	38.74	46.74	39.98	38.32		
Hood	12.86	15.27	13.15	12.65		
Hunt	27.87	33.80	29.30	27.76		
Johnson	31.02	37.00	31.91	30.73		
Kaufman	31.64	38.34	32.64	31.18		
Parker	30.48	36.17	31.14	29.86		
Rockwall	15.17	16.34	14.43	12.09		
Tarrant	308.10	332.36	291.45	245.00		
Wise	21.61	25.90	22.06	21.13		
Total	1221.14	1340.96	1169.86	1002.15		

2020 Emissions Inventory Carbon Monoxide (CO) (tons/day) Summer Season						
	Midweek Friday Saturday Sunday					
Collin	106.72	113.67	99.10	83.66		
Dallas	371.18	395.18	349.20	295.31		
Denton	81.57	86.85	76.02	64.44		
Ellis	32.79	38.96	34.71	33.60		
Hood	9.65	11.20	9.90	9.65		
Hunt	22.33	26.52	23.88	22.92		
Johnson	25.01	29.58	26.18	25.53		
Kaufman	26.97	32.42	28.35	27.52		
Parker	24.97	29.23	25.88	25.10		
Rockwall	11.85	12.65	11.17	9.50		
Tarrant	250.01	266.34	235.28	199.86		
Wise	16.95	20.19	17.66	17.20		
Total	979.98	1062.78	937.32	814.29		

2020 Emissions Inventory						
Carbon Monoxide (CO) (tons/day) School Season						
Midweek Friday Saturday Sunday						
Collin	105.94	114.77	100.20	83.03		
Dallas	368.49	397.66	352.44	293.23		
Denton	81.01	87.73	76.88	63.96		
Ellis	31.38	38.27	33.15	31.65		
Hood	9.25	11.01	9.49	9.14		
Hunt	21.38	26.06	22.82	21.61		
Johnson	23.96	29.05	25.02	24.08		
Kaufman	25.72	31.78	26.98	25.79		
Parker	23.94	28.74	24.77	23.72		
Rockwall	11.79	12.80	11.30	9.43		
Tarrant	248.19	268.04	237.48	198.50		
Wise	16.20	19.81	16.84	16.16		
Total	967.26	1065.71	937.38	800.30		

h

2012 Emissions Inventory Carbon Dioxide (CO ₂) (tons/day) Summer Season					
	Midweek	Friday	Saturday	Sunday	
Collin	11,877	12,489	9,764	7,920	
Dallas	40,048	42,261	32,586	26,393	
Denton	10,142	10,530	8,307	6,745	
Ellis	4,259	4,899	3,720	3,645	
Hood	1,001	1,167	932	901	
Hunt	3,417	3,920	2,893	2,861	
Johnson	2,891	3,356	2,615	2,547	
Kaufman	3,420	3,933	3,040	2,963	
Parker	3,096	3,535	2,709	2,647	
Rockwall	1,352	1,402	1,098	900	
Tarrant	25,587	27,003	20,951	16,997	
Wise	2,085	2,407	1,845	1,800	
Total	109,176	116,903	90,459	76,320	

Exhibit 6.3: Emission Estimates for the DFW 12-County Modeling Domain (continued)

2012 Emissions Inventory Carbon Dioxide (CO ₂) (tons/day)						
	Sc	chool Season				
	Midweek Friday Saturday Sunday					
Collin	11,769	12,649	9,902	7,841		
Dallas	39,596	42,675	33,008	26,147		
Denton	10,087	10,731	8,447	6,668		
Ellis	4,037	4,797	3,520	3,393		
Hood	949	1,144	883	840		
Hunt	3,241	3,841	2,739	2,666		
Johnson	2,741	3,287	2,475	2,371		
Kaufman	3,243	3,855	2,878	2,762		
Parker	2,938	3,465	2,567	2,468		
Rockwall	1,346	1,428	1,116	890		
Tarrant	25,312	27,272	21,223	16,839		
Wise	1,977	2,358	1,746	1,677		
Total	107,237	117,500	90,506	74,563		

2020 Emissions Inventory Carbon Dioxide (CO ₂) (tons/day) Summer Season					
	Midweek	Friday	Saturday	Sunday	
Collin	13,205	13,775	10,726	8,698	
Dallas	41,663	43,758	33,364	27,030	
Denton	10,618	11,050	8,538	6,943	
Ellis	4,883	5,588	4,195	4,119	
Hood	964	1,128	902	871	
Hunt	3,420	3,934	2,943	2,883	
Johnson	3,157	3,689	2,854	2,782	
Kaufman	3,912	4,536	3,457	3,385	
Parker	3,573	4,080	3,094	3,030	
Rockwall	1,470	1,525	1,181	969	
Tarrant	27,091	28,516	21,927	17,798	
Wise	2,098	2,457	1,890	1,840	
Total	116,055	124,037	95,071	80,347	

2020 Emissions Inventory Carbon Dioxide (CO ₂) (tons/day)						
School Season						
	Midweek Friday Saturday Sunday					
Collin	13,079	13,953	10,879	8,611		
Dallas	41,176	44,198	33,802	26,777		
Denton	10,523	11,202	8,663	6,872		
Ellis	4,629	5,472	3,970	3,833		
Hood	913	1,105	854	811		
Hunt	3,244	3,853	2,786	2,685		
Johnson	2,990	3,610	2,697	2,584		
Kaufman	3,706	4,437	3,267	3,141		
Parker	3,389	3,996	2,928	2,821		
Rockwall	1,460	1,550	1,199	959		
Tarrant	26,789	28,797	22,211	17,633		
Wise	1,985	2,403	1,785	1,707		
Total	113,884	124,575	95,041	78,434		

2012 Emissions Inventory Nitrogen Oxide (NO) (tons/day) Summer Season					
	Midweek	Friday	Saturday	Sunday	
Collin	19.15	19.23	14.13	12.44	
Dallas	70.01	70.55	51.34	44.95	
Denton	18.13	17.88	12.93	11.41	
Ellis	10.74	11.65	7.80	8.00	
Hood	2.19	2.43	1.84	1.83	
Hunt	10.43	11.54	7.73	7.95	
Johnson	6.25	6.85	4.85	4.92	
Kaufman	8.17	8.84	6.09	6.18	
Parker	7.98	8.52	5.66	5.80	
Rockwall	3.03	3.00	2.14	1.91	
Tarrant	44.10	44.45	32.72	28.81	
Wise	5.84	6.38	4.31	4.38	
Total	206.01	211.33	151.54	138.58	

2012 Emissions Inventory Nitrogen Oxide (NO) (tons/day)					
School Season					
	Midweek	Friday	Saturday	Sunday	
Collin	19.03	19.45	14.29	12.34	
Dallas	69.40	71.12	51.86	44.63	
Denton	18.07	18.18	13.10	11.30	
Ellis	10.24	11.44	7.44	7.52	
Hood	2.09	2.39	1.76	1.73	
Hunt	9.93	11.33	7.35	7.45	
Johnson	5.98	6.73	4.64	4.64	
Kaufman	7.80	8.69	5.81	5.81	
Parker	7.62	8.37	5.39	5.46	
Rockwall	3.02	3.04	2.17	1.90	
Tarrant	43.74	44.81	33.04	28.62	
Wise	5.57	6.27	4.11	4.12	
Total	202.47	211.82	150.95	135.52	

2020 Emissions Inventory Nitrogen Oxide (NO) (tons/day) Summer Season					
	Midweek	Friday	Saturday	Sunday	
Collin	7.26	7.28	5.50	4.91	
Dallas	26.16	26.17	19.33	17.25	
Denton	6.62	6.56	4.82	4.33	
Ellis	4.30	4.61	3.12	3.20	
Hood	0.71	0.78	0.63	0.62	
Hunt	3.10	3.39	2.37	2.41	
Johnson	2.30	2.51	1.85	1.87	
Kaufman	3.24	3.46	2.41	2.44	
Parker	3.80	4.05	2.77	2.81	
Rockwall	1.24	1.23	0.88	0.81	
Tarrant	16.91	16.99	12.85	11.51	
Wise	1.93	2.10	1.46	1.49	
Total	77.58	79.13	57.99	53.64	

2020 Emissions Inventory Nitrogen Oxide (NO) (tons/day)						
School Season						
	Midweek	Friday	Saturday	Sunday		
Collin	7.22	7.35	5.56	4.88		
Dallas	25.95	26.36	19.50	17.14		
Denton	6.59	6.63	4.88	4.30		
Ellis	4.11	4.53	2.99	3.02		
Hood	0.69	0.77	0.61	0.60		
Hunt	2.96	3.34	2.26	2.27		
Johnson	2.21	2.47	1.78	1.77		
Kaufman	3.11	3.40	2.30	2.30		
Parker	3.63	3.98	2.64	2.65		
Rockwall	1.24	1.24	0.89	0.80		
Tarrant	16.78	17.11	12.96	11.44		
Wise	1.84	2.06	1.40	1.40		
Total	76.33	79.26	57.76	52.58		

2012 Emissions Inventory Nitrogen Dioxide (NO2) (tons/day) Summer Season					
	Midweek	Friday	Saturday	Sunday	
Collin	2.12	2.16	1.56	1.33	
Dallas	7.82	7.96	5.72	4.86	
Denton	2.02	2.01	1.44	1.23	
Ellis	1.18	1.30	0.88	0.89	
Hood	0.24	0.27	0.21	0.21	
Hunt	1.13	1.27	0.86	0.88	
Johnson	0.67	0.75	0.53	0.53	
Kaufman	0.93	1.02	0.71	0.72	
Parker	0.91	0.98	0.65	0.66	
Rockwall	0.34	0.34	0.24	0.21	
Tarrant	4.81	4.91	3.55	3.02	
Wise	0.69	0.76	0.52	0.52	
Total	22.88	23.73	16.86	15.06	

2012 Emissions Inventory Nitrogen Dioxide (NO ₂) (tons/day)								
School Season								
	Midweek	Friday	Saturday	Sunday				
Collin	2.11	2.19	1.59	1.32				
Dallas	7.75	8.04	5.79	4.82				
Denton	2.01	2.05	1.46	1.22				
Ellis	1.12	1.28	0.83	0.83				
Hood	0.23	0.27	0.20	0.19				
Hunt	1.08	1.24	0.81	0.82				
Johnson	0.64	0.74	0.50	0.50				
Kaufman	0.89	1.00	0.68	0.67				
Parker	0.86	0.96	0.62	0.62				
Rockwall	0.34	0.35	0.24	0.20				
Tarrant	4.77	4.95	3.59	2.99				
Wise	0.66	0.75	0.49	0.49				
Total	22.45	23.80	16.79	14.69				

2020 Emissions Inventory Nitrogen Dioxide (NO2) (tons/day) Summer Season							
	Midweek	Friday	Saturday	Sunday			
Collin	1.25	1.23	0.82	0.72			
Dallas	4.76	4.65	2.96	2.61			
Denton	1.23	1.19	0.76	0.68			
Ellis	0.92	0.98	0.59	0.62			
Hood	0.11	0.12	0.09	0.09			
Hunt	0.65	0.71	0.45	0.47			
Johnson	0.40	0.44	0.28	0.29			
Kaufman	0.72	0.75	0.48	0.49			
Parker	0.92	0.96	0.59	0.61			
Rockwall	0.28	0.27	0.17	0.16			
Tarrant	2.86	2.82	1.84	1.62			
Wise	0.44	0.48	0.29	0.30			
Total	14.55	14.61	9.33	8.67			

2020 Emissions Inventory Nitrogen Dioxide (NO2) (tons/day) School Season							
	Midweek	Friday	Saturday	Sunday			
Collin	1.25	1.25	0.83	0.71			
Dallas	4.71	4.70	2.99	2.59			
Denton	1.22	1.21	0.77	0.67			
Ellis	0.88	0.96	0.57	0.58			
Hood	0.10	0.12	0.08	0.08			
Hunt	0.62	0.69	0.43	0.44			
Johnson	0.38	0.43	0.27	0.28			
Kaufman	0.70	0.74	0.46	0.46			
Parker	0.87	0.95	0.56	0.58			
Rockwall	0.28	0.28	0.17	0.16			
Tarrant	2.83	2.84	1.86	1.61			
Wise	0.42	0.47	0.28	0.28			
Total	14.27	14.63	9.27	8.44			