
ADVANTAGES OF USING SMARTWAY TECHNOLOGIES

Energy Center Workshop Tarrant County Community College April 28, 2016

Jasper Alve, Air Quality Planner North Central Texas Council of Governments

Structure of Presentation

Introduction to NCTCOG

Overview of Trucking Industry

Energy Consumption and Emissions of Heavy-Duty Trucks

Projected Challenges

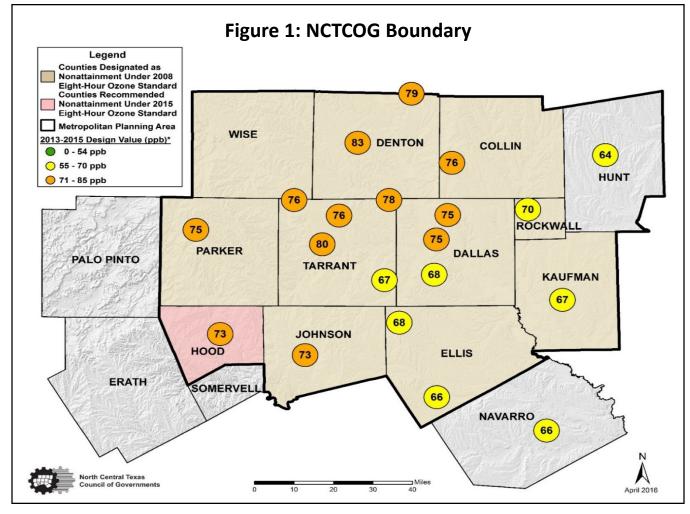
Mandates

SmartWay Technologies

SMARTE Program

Saving Money and Reducing Truck Emissions

North Central Texas Council of Governments


Council of Governments (COG)

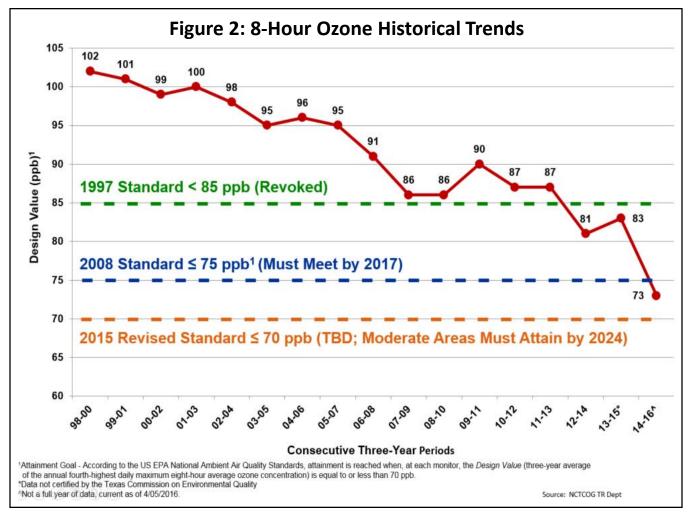
Metropolitan Planning Organization (MPO)

230 member governments

Goals

- Planning for common needs
- Cooperating for mutual benefit
- Coordinating for sound regional development

2008 8-Hour Ozone National Ambient Air Quality Standards



Ground level ozone (O₃) formation: Nitrogen Oxides (NOx) and Volatile Organic Compounds (VOCs) along with sunlight

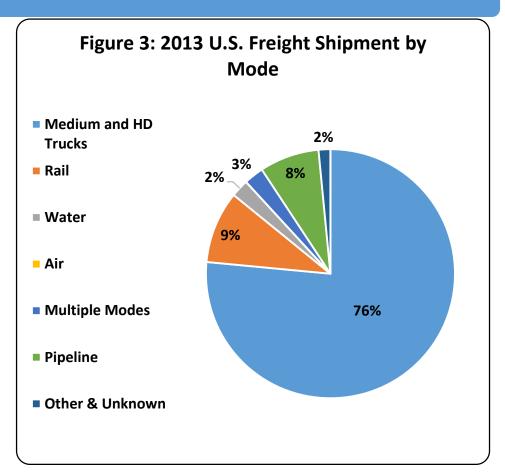
10 counties are designated in nonattainment of the 2008 8-hour ozone standards

Expanding to include Hood county (2015 revised standard)

Pollutants harmful to public health and environment

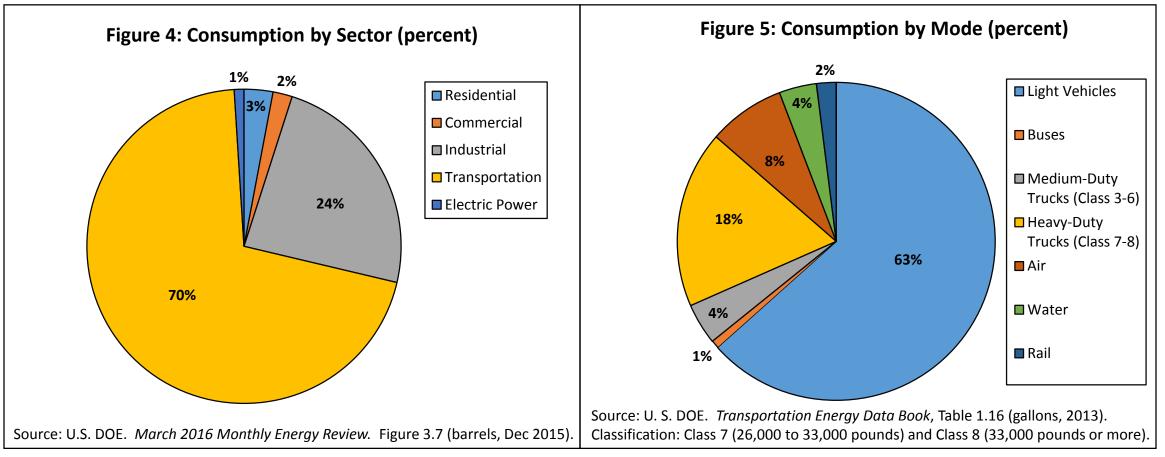
Mobile Source Air Quality Programs

http://www.nctcog.org/trans/air/programs/

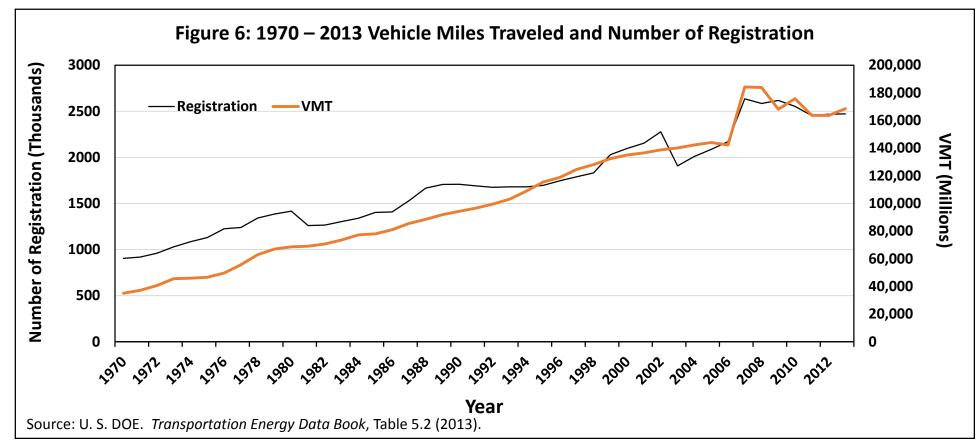

Trucking Industry

Overview (2013)

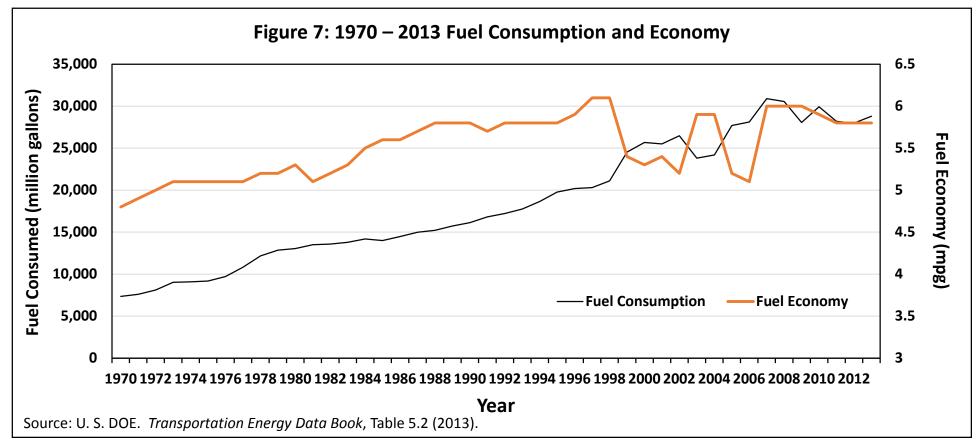
- Trucks moved around 13.7 billion tons of freight shipments
- Value of shipment was approximately \$10.8 billion
- Employed 30.5% of all transportation and warehousing sector employment
- Account 4.1%, but heavy duty trucks (HDTs) account approximately 1% of all highway vehicles
- Account roughly 9.2% of all highway vehicle miles traveled (VMT) – (HDTs) account for 5.6%


Source: U.S. DOT. (2015). Freight Facts and Figures.

Transportation Sector Petroleum Consumption

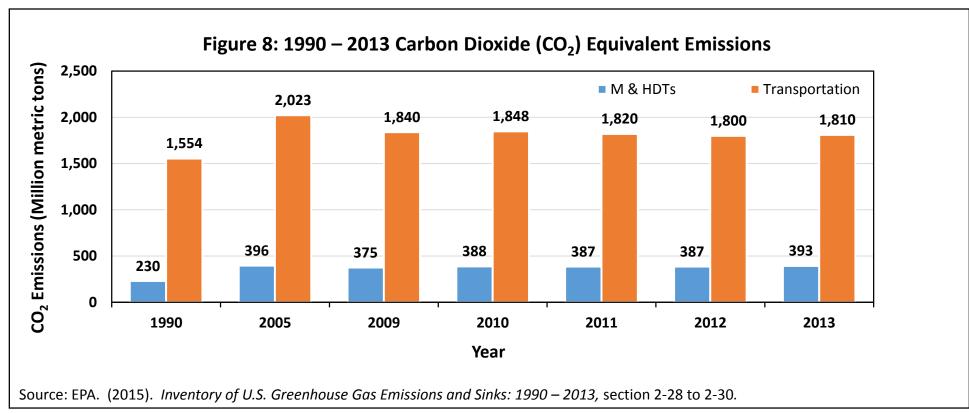

- Consumed, on average, approximately 13.64 million barrels of petroleum per day
- Trucking industry, medium and heavy-duty trucks, account for approximately 26%

Historical Vehicle Miles Traveled



- HDT registrations jumped by 173% from 905K to 2.5M
- VMT increased by around 380% from 35B to 168B

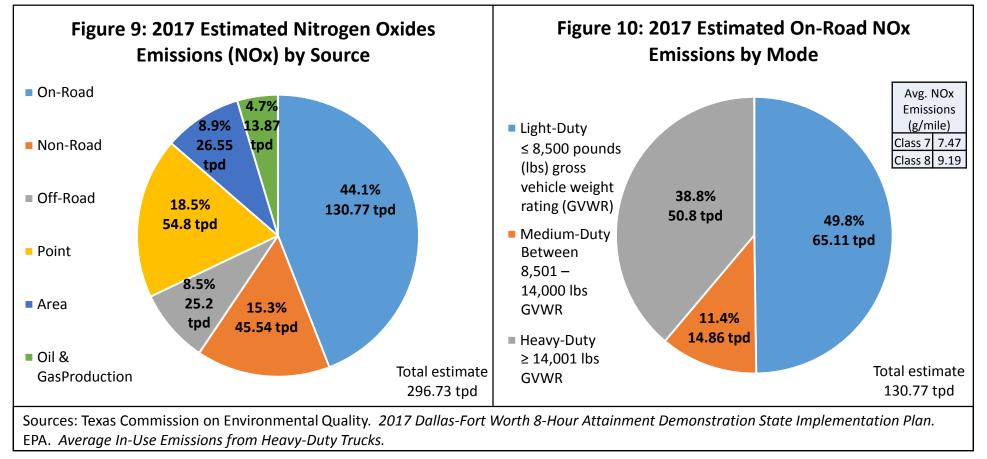
Historical Fuel Consumption


- Consumed, on average, about 28.5 billion gallons of fuel; roughly 290% increase from 1970
- 4.8 mpg (1970) to 5.8 mpg (2013); increase of 21%

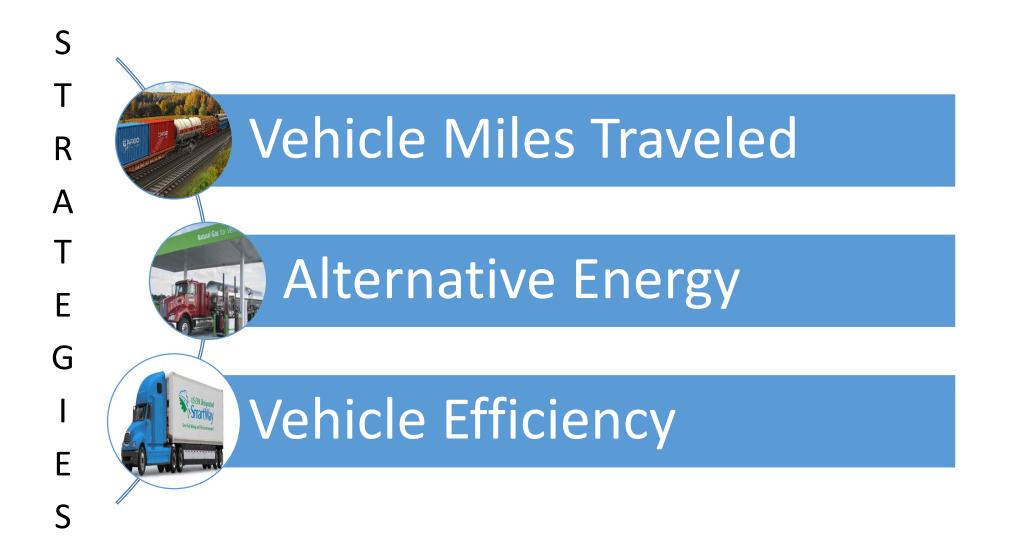
CICOG

Greenhouse Gas Emissions

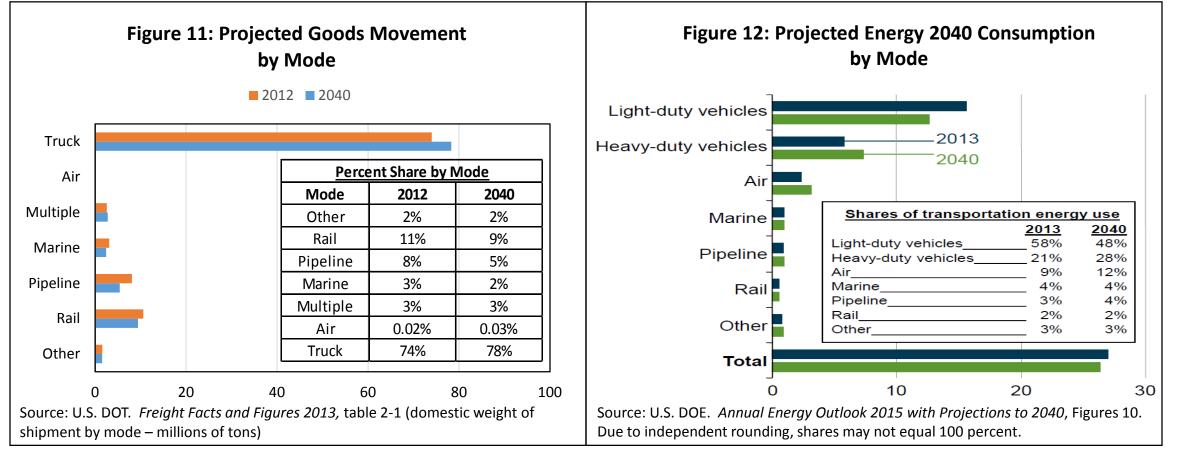
- Percent share: 15% (1990) vs. 21% (2013)
- 67% increase (230 MMT to 393 MMT)
- Gallon gasoline (19.64 pounds) vs. diesel (22.38 pounds)



CICOG


Regional Nitrogen Oxides Emissions

- On-Road NOx emissions 130.77 tons per day (tpd) or approximately 44%
- HDTs NOx emissions 50.8 tpd or approximately 39% (on-road) 17% (total)


Reducing Fossil Fuel Consumption

Projected Shipment and Energy Consumption

- On average, in 2013, a HDT traveled about 68,165 miles
- Shipment by truck projected to increase by approximately 4%, increase in energy consumption by 7%

Regional Heavy-Duty Truck Traffic Projection

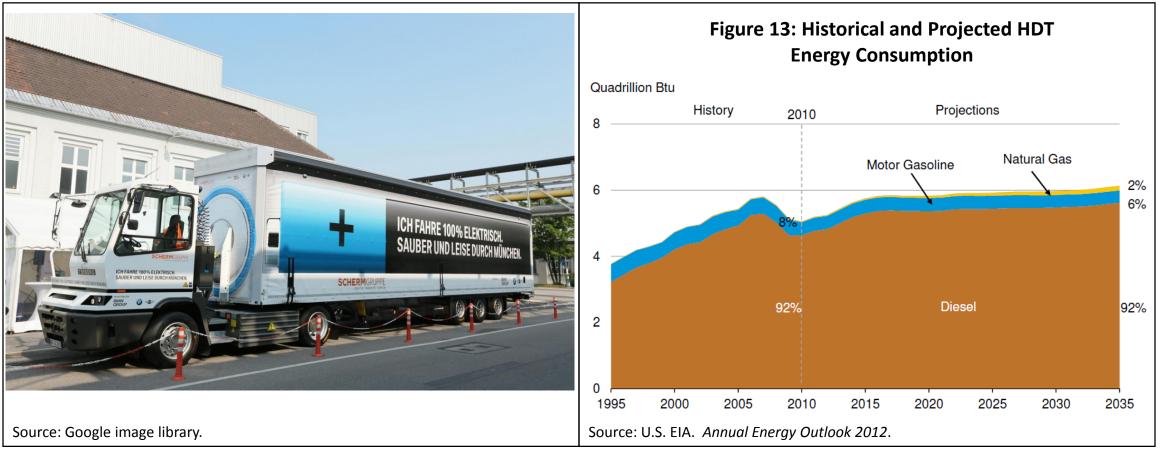

- Freight flows expected to increase by 121%
- AADTT expected to increase by 40%

Table 1: DFW Freight Flows by Truck (tons in millions)					Table 2: AADTT IN DFW						
Trade Corridors		2011	2040	Change (percent)		_		Length	AADTT	AADTT	
IH-35	San Antonio - Dallas	26.83	61.52	129	Route	From	То	(mile)	(2013)	(2033)	
IH-45	Houston - Dallas	18.48	35.26	91	IH-20	US-377	US-175	52	15,769	22,114	
IH-30	Dallas - Arkansas	9.82	24.88	153						-	
IH-35	Dallas - Oklahoma	6.73	14.78	120	IH-30	IH-35W	IH-635	42	11,458	16,040	
US 287	Dallas - Amarillo	4.50	9.78	117	IH-35E	IH-20	US-380	50	12,198	17,078	
IH-20	IH 10 - Dallas	4.31	11.42	165	IH-35W	IH-20	US-380	45	10,501	14,701	
US 75	Dallas - Oklahoma	3.18	6.02	89	IH-635	SH-121	IH-20	38	17,655	24,716	
IH-20	Dallas - Lousiana	0.94	1.46	55	US-75	IH-30	US-380	32	13,635	19,088	
	Total 74.79 165.12 121					Source: Dr. Mohammad Najafi. Presentation on Integrating Underground Freight Transportation (UFT) Into Existing Intermodal System, slide 17. AADTT: Average annual daily truck traffic					
Source: Tx	Source: TxDOT. 2012 International Trade Corridor Plan, pg. 22.										

Alternative Energy

- Range of 62 miles, takes 3 to 4 hours to fully charge (BMW)
- Natural gas around 2%

Heavy-Duty Truck Emission and Fuel Standards

Phase 1

M

Α

Ν

Α

E

S

- First GHG emission and fuel standards for medium and heavy-duty trucks
- Applies to model years (MYs) 2014 2018
 - 7 to 20% reduction in CO₂ (EPA) and fuel consumption (NHTSA) by MY 2017
 - Reduce approximately 250 MT of CO₂
 - Average 6.9 mpg

Phase 2

- Applies to MYs 2021 2027
- Achieve 24% lower CO₂ emissions and fuel consumption relative to Phase 1 standards
- Approximately cuts GHG emissions by approximately 1 billion MT, saves 1.8 billion barrels of oil, and reduce fuel cost by \$170 billion
 - Average 8.5 mpg

Sources: EPA. EPA and NHTSA Propose First-Ever Program to Reduce Greenhouse Gas Emissions and Improve Fuel Efficiency of Medium- and Heavy-Duty Vehicles: Regulatory Announcement and EPA and NHTSA, Propose Standards to Reduce Greenhouse Gas Emissions and Improve Fuel Efficiency of Medium-and Heavy-Duty Vehicles for Model Year 2018 and Beyond.

SmartWay Program

Goals

- Develop public and private partnership
- Improve freight efficiency
- Reduce emissions

Results

- Over 3,000 partners
- Saved 170.3 million barrels of oil
- Reduce emissions: 72M metric tons (MT) of CO₂, 1.4M MT NOx, and 72K MT of Particulate Matter

Source: EPA. Fast Facts About SmartWay Partnership. Retrieved from https://www3.epa.gov/smartway/about/index.htm.

SmartWay Strategies

Technologies

- Aerodynamics
- Idling Reduction
- Low Rolling Resistance Tires
- SmartWay Tractors
- SmartWay Trailers

Other Fuel Saving Strategies

- Alternative Fuels
- Engine Repower
- Speed Management Practices
- Weight Reduction Strategies

Cab Roof and Side Extender Fairings

Cab Roof

- 4 to 8%
- Saves, on average, around 700 fuel gallons
- Equivalent to \$1,400 savings in fuel cost
- 7.2 MT CO₂ reduction

Side Extender

- 1 to 2%
- 175 fuel gallons
- Saves \$350 in fuel cost
- 1.8 MT CO₂ reduction

Sources: EPA, Improved Aerodynamics: A Glance at Clean Freight Strategies and U.S. DOE, Transportation Energy Data Book, Table 5.2 (2013).

Trailer Side Skirts and Tails

YEARS 1966-2010 NCTCOG

Side Skirts

- 4 to 7%
- Saves 645 gallons
- Reduces fuel cost by around \$1,300
- 13.1 MT CO₂

Tails

- 1 to 2%
- 175 fuel gallons
- Saves \$350 in fuel cost
- 1.8 MT CO₂ reduction

Sources: EPA, Improved Aerodynamics: A Glance at Clean Freight Strategies and U.S. DOE, Transportation Energy Data Book, Table 5.2 (2013).

Idling Reduction Devices

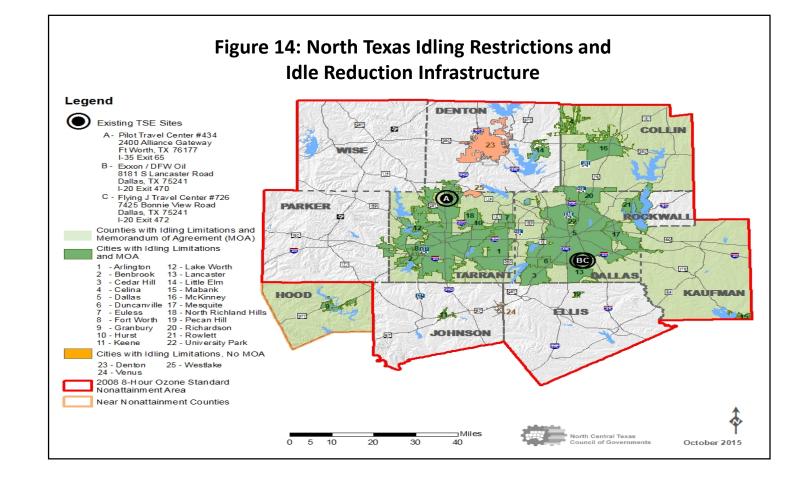
Auxiliary Power Unit

Heavy-duty trucks, on average, spend 2,400 idling hrs/year, burning 0.6 gal/hr

Use

- Heating
- Air conditioning
- Electrical accessories

Benefits


WARNING

5 MINUTE IDLE LIMIT

BUSES - MAXIMUM 30 MINUTES

STATE CODE 30 TAC 114.512 www.EngineOffNorthTexas.org

- 1,440 gallons saved
- \$2,880 fuel savings
- 14.6 MT CO₂

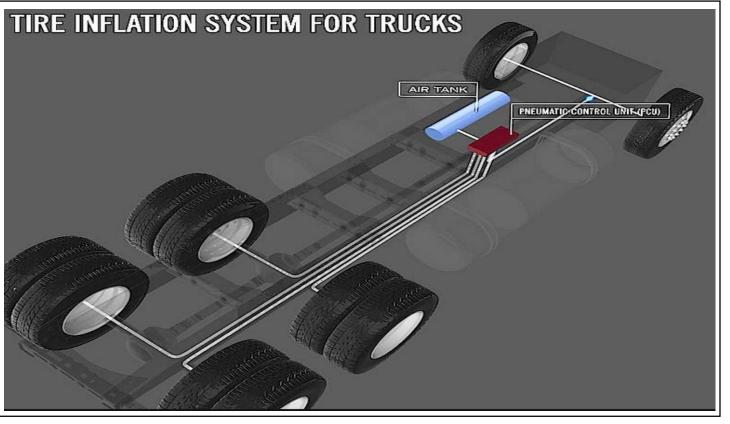
Low Rolling Resistance Tires

Single Wide Tires or Dual Tires

- 3% reduction in fuel consumption (6.19 mpg)
- Fuel reduction equivalent to 500 gallons
- Fuel cost savings \$1,000
- 14.6 MT CO₂

Reduce flexing and bending of tires

Source: EPA. Idle Reduction: A Glance at Clean Freight Strategies.


List of SmartWay tires is available online at https://www.epa.gov/verified-diesel-tech/smartway-verified-list-low-rolling-resistance-lrr-tires-and-retread

Automatic Tire Inflation Systems

Benefits

- 0.60% increase in fuel economy
- Fuel reduction equivalent to 100 gallons
- Fuel cost savings \$200
- 1.12 MT CO₂

Reduce flexing and bending of tires

Source: EPA. Automatic Tire Inflation Systems: A Glance at Clean Freight Strategies.

SmartWay Certified Tractors and Trailers

Benefits

- Reduce fuel consumption by up to 20%
- Equivalent to 2,000 to 4,000 gallons of diesel per year
- Fuel savings between \$4,000 to \$8,000 per year
- Reduces CO₂ between 20.3 MT to 40.7 MT

Sources: EPA, SmartWay Designated Tractors and Trailers and U.S. DOE, Transportation Energy Data Book, Table 5.2 (2013).

SuperTruck Program (2010)

Goal

Increase overall fuel economy to 9.75 mpg

Partners

- Daimler Truck North America
- Cummins & Peterbilt
- Volvo
- Navistar

Annual Projections

- Spend nearly \$30B less on fuel
- Consumer nearly 300M fewer barrels of oil

Freightliner Achieved 110% increase from 5.8 mpg to 12.2 mpg

Cummins & Peterbilt 85% increase from 5.8 mpg to 10.7 mpg

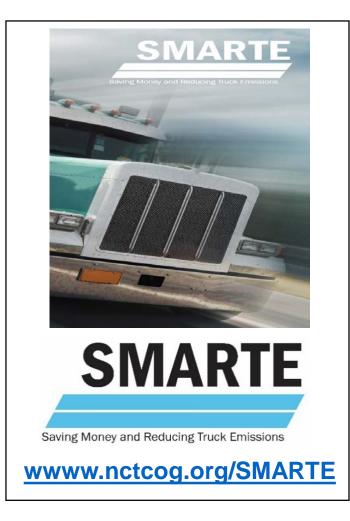
Sources: The White House. (2014). Improving the Fuel Efficiency of American Trucks – Bolstering Security, Cutting Carbon Pollution, Saving Money and Supporting Manufacturing Innovation.

SMARTE Program

Saving Money and Reducing Truck Emissions (SMARTE)

Reduce fuel consumption and fuel-related emissions from the trucking industry

Program Objective


Conduct outreach in order to provide awareness owneroperators and small-to-medium size trucking companies

Regulations

Funding opportunities Technological and operational solutions

Program Resources

Driver, Fleet Manager, and Vendor information folders Informational brochure Application assistance

SMARTE Program Results

Number of Technology Upgrades

- 74 idle reduction devices
- 25 aerodynamic devices
- 2 low rolling resistance tires

Annual Fuel Consumption and Cost Reduced

- 90,229 gallons
- \$180,458

Annual Pollutants Reduced (tons)

- 1,001 ton of CO₂
- 15.93 ton of NOx

CICOG

Concluding Remarks

Impact on Environment

- Despite just around 5% of on-road vehicles, HDTs account for nearly 18% and 21% of, respectively, fuel consumption and CO₂ emissions
- Roughly 36% of NOx emissions in DFW is attributed to heavy-duty diesel trucks

Challenges

R

Ε

Α

Ρ

- HDTs will continue to play a significant role in the movement of goods
- Energy demand from HDTs is expected to increase by roughly 33% by 2040
- Average annual daily truck traffic in DFW is projected to rise 40% by 2033

Improving Fuel Economy

- SmartWay technologies expected to increase fuel efficiency up to 20% (saves 2,000 to 4,000 gallons)
- SuperTruck Program: achieve 9.5 mpg or above (10.7 and 12.2)

Contact Information

Jasper Alve Air Quality Planner jalve@nctcog.org 817-695-9247

Jason Brown Air Quality Operations Manager jbrown@nctcog.org 817-704-2514

Websites www.nctcog.org/airquality www.nctcog.org/smartway www.nctcog.org/smarte

North Central Texas Council of Governments

