Division 2000: Pavement Systems

DIVISION 2000 PAVEMENT SYSTEMS

TABLE OF CONTENTS

Drawing\#	Subject	Section I: Item \#
2010	Reinforctevirlete Pavenाent Six-Lane Divided Thoroughfare	303. pages 303-1 to 303-23
$\begin{aligned} & 2015 \\ & 2020 \end{aligned}$	Plan view with and without bike lane \rightarrow Doinfereedconerete Pavement- Four-Lane Divided Thoroughfare	303. pages 303-1 to 303-23
$\begin{aligned} & 2025 \\ & 2030 \end{aligned}$	Plan view with and without bike lane \rightarrow Reinfereed cenerete Pavement 2- \& 4- Undivided Thoroughfare	303. pages 303-1 to 303-23
2040	Reinforced Concrete Pavement Alleys	303.5. pages 303-1 to303-23
2050	Reinforced Concrete Pavement Joints	303.5.4. pages 303-1 to 303-23
2060	Reinforced Concrete Pavement Transverse Joint Spacing	303.5.4. pages 303-1 to 303-23
2070	Reinforced Concrete Pavement Street Headers	303.4. pages 303-1 to 303-23
2000	ReinforcedConerete PavementBridge Approach Slab	303. pages 303-1 to 303-23
2000	HotMix-Asphelt Pavememt	302. pages 302-1 to 302-25
2400	Four-Lane Divided Thoroughfare	302. pages 302-1 to 302-25
2110	Hot Mix Asphalt Pavement 2- \& 4-Lane Undivided Thoroughfare	302. pages 302-1 to 302-25
2120	Concrete Curb \& Gutter Integral, Separate, and Doweled	305.1. pages 305-1 to 305-4
2125A-2125B	Curb Ramps	
2130	Median Island Pavement Nose \& Left Turn Lane	305.3. pages 305-1 to 305-4
2140	Median Island Pavement Monolithic Concrete Nose	305.3. pages 305-1 to 305-4
21250A-2150B	Driveway Approach Flared Return Type	305.2. pages 305-1 to 305-4
2155	Driveway Approach Radius Return Type	305.2. pages 305-1 to 305-4
2160	Alley Approach Radius Return Type	305.2. pages 305-1 to 305-4
2170	Reinforced Concrete Sidewalks Joints and Spacing	305.2. pages 305-1 to 305-4

Drawing \#	Subject	Section 1: Item \#
2180	Reinforced Concrete Retaining Wall Integral With Sidewalk	802.2. pages 802-1 to 802-7
2190	Pavement Systems General Notes	302. pages 302-1 to 302-25 303. pages 303-1 to 303-23
2200	Subdrains Pavement Subgrade	301. pages 301-1 to 301-15
2210	Alley Geometrics Type "A" \& Type " B "	303.5. pages 303-1 to 303-23
2220	Alley Geometrics Type ${ }^{9} \mathrm{C}$ " \& Type ${ }^{2} \mathrm{D}$ "	303.5. pages 303-1 to 303-23
2230	Alley Geometrics Type " E " \& Type " F "	303.5. pages 303-1 to 303-23
2240	Alley Geometrics Type "G" \& Type " H "	303.5. pages 303-1 to 303-23
2250	Alley Geometrics Type ${ }^{\text {a }}$	303.5. pages 303-1 to 303-23
2260	Alley Intersection Proposed To Existing	303.5. pages 303-1 to 303-23
2270A	Metal Beam Guard Fence Roadside Placement \& Beam Elements	801.2. pages 801-1 to 801-5
2270B	Metal Beam Guard Fence Line Post \&Connections	801.2. pages 801-1 to 801-5
2270C	Metal Beam Guard Fence End Section \& Angle Anchor Post	801.2. pages 801-1 to 801-5
2270D	Metal Beam Guard Fence Special End Shoe \& Anchor Post	801.2. pages 801-1 to 801-5
2270E	Metal Beam Guard Fence General Notes	801.2. pages 801-1 to 801-5
2280A	Metal Beam Guard Fence Two-Way Traffic Bridge End	801.2. pages 801-1 to 801-5
2280B	Metal Beam Guard Fence Two-Way Traffic Bridge End	801.2. pages $801-1$ to $801-5$
2290	Metal Beam Barricade End of Road	801.2. pages 801-1 to 801-5

$8^{\prime \prime}$ minimum stabilized subgrade per section 301 and as approved or specified by owner
1... "min. HMAC thickness shall be 2" type D surface course over 8 " type B binder course."
3. Alternative materials, subgrade, thickness, and steel may be utilized with more detailed study and analysis and as approved by owner
4. Reference section 301 if lime stabilized subgrade is utilized.
5. Reference Chapter 4 (Design of on-road facilities) AASHTO Guide for the development of bicycle facilities, 2012 or as updated.

Make sure the format, text size, arrow size, etc. is consistent on the page.

Show subgrade box on all Division 2000 drawings.

Replace Plan with a more general layout to include crosswalks, ADA ramps, striping, and possibly additional lane width for bicycle lanes per TxDOT
$8^{\prime \prime}$ minimum stabilized subgrade per section 301 and as approved or specified by owner
1... "min. HMAC thickness shall be 2" type D surface course over $8^{\prime \prime}$ type B binder course."
3. Alternative materials, subgrade, thickness, and steel may be utilized with more detailed study and analysis and as approved by owner
4. Reference section 301 if lime stabilized subgrade is utilized
5. See detail 2170 for sidewalks

NOTES:

OR AS SPECIFIED BY OWNER
2. MN. CURB HEIGHT AND WDTH SHALL BE 6",
3. AUTERNATE REINFORCEMENT SHAL BE NF
3. At ERPNATE REINFORCEMENT SHAU BE **
BARS ON 30° CERTERS BOTH WAYS

Make sure the format, text size, arrow size, etc. is consistent on the page.

Show subgrade box on all Division 2000 drawings.

Replace Plan with a more general layout to include crosswalks, ADA ramps, striping, and possibly additional lane width for bicycle lanes per TxDOT
$8^{\prime \prime}$ minimum stabilized subgrade per section 301 and as approved or specified by owner
$6 "$ stabilized subgrade per section 301 for 30^{\prime} or less or specified by owner
2. Alternative materials, subgrade, thickness, and steel may be utilized with more detailed study and analysis and as approved by owner
3... "min. HMAC thickness shall be 2" type D surface course over 8 " type B binder course."

(1) INDICATES SAWED LONGIUDAL CONTRACTION
OR CONSTRUCTON JOINT.

OR CONSTRUCTION JOINT.
NOTES : $4^{\prime \prime} 18^{\prime \prime}$

ALL REINFORCEMENT SHALL 日E $\geqslant<$ \&ARS ON $\lll<$ CENTERS \quad 4. Straight crown or
2. ALTERNATL RGINFORCEMENT SHALI OE \#4 BARS ON $30^{\prime \prime}$
2. ALTERNATL REINFORCEMENT SHAH OE "4 BARS ON $30 "$
CENTERS OOIT WAYS.
3. PAVEVENT STRENGTH SHALL CONFORM TO CLASS "C" OR "PC" CONCR
3. PAVEMENT STRENGTH SHALL CONFORM TO CLASS "C" OR "PC" CONCRETE, OR AS SPECIFED BY THE OWNER. parabolic crown as approved by owner 5. See detail 2170 for sidewalks

EINFORCED CONCRETE PAVEMEN		stwoneo spercanow rembevz303301	
$2-\& 4$-LANE UNDIVIDED		$\begin{aligned} & \text { OMIE } \\ & \text { CT. '04 } \\ & \hline \end{aligned}$	

Show a shared use path on the right side of the section details. Add note describing that two different options for multimodal transportation are being shown but installation should be specified by owner.

Shared path width is a minimum of 10'.

Everywhere with ASHTO note should say refer to note 5 and make it one note at the end.

Add "Separate curb/gutter as necessary (reference drawings 2120)" to callouts for curb/gutter

If there's a required bike lane the buffer should be 1'-3' depending on the speed.

Sidewalks should be 5' as directed by city but can be reduced to a minimum of 3^{\prime} sidewalk with 5' bulb out.

Chris will send markup of plan view.

Put the plan
views on a
separate page (2015 and 2025).

Show a plan view with bike lanes and without.

Remove bike box on plan view and get rid of ASHTO reference.

Add curb ramp, cross walk markings, and make sure the median nose is not in the cross walk on the plan view.

The radius for the curb on the plan view should be 30'.

LEF I IUKN SECIIUN

Ref. FHWA
Federal
Highway
Administration IA-18

NOTES:

1. MIN. PAVEMENT DEPTH AND STRENGTH SHALL be $3^{\prime \prime}$ - CLASS "C" OR "PC", OR AS SPEIIFED BY OWNER. BiKe BCX
2. MIN. CURB HEIGHT AND WDTH SHALL BE 6 ", OR AS SPECIFIED BY OWNER.

CENTERS BOTH WAYS. BARS ON 30° CENTERS BOTH WAYS.
ref. NACTO Urben
ref. Nhero from
(Intersections
$8^{\prime \prime}$ minimum stabilized subgrade per section 301 and as approved or specified by owner

1. Crown section may be used in lieu of invert with provision of an adequate drainage design and as approved by owner
2. Alternative subgrade, thickness, and steel may be utilized with more detailed study and analysis and as approved by owner
3. See detail 2170
for sidewalks

NOTES:

1. PRONOE SAWED TRANSVERSE COUTMETION
2. REINF NOT NURE THAN $20^{\prime \prime}$ CO $10^{\prime \prime}$
3. REINFORCED WTH NN. 3 BARS AT
BOTH WARS. Or as approved by owner
4. RIEANAT BFINFORCEMENT NOT BARS AT
5. EXPANSION JOINTS TO BE PLACED AT ALL INTER-
6. EXPANSION JOINTS TO 日E PLACED AT ALL INTER-
SECTONS AND NOT TO EXCEED 600^{\prime} BETWEEN SECTIONS
JOINTS.
7. CONCRETE SHALL BE CLASS "C" OR "PC", OR AS SPECIFIED BY OWNER.

REINFORCED CONCRETE PAVEMENT		${ }^{\text {aracana moxer }}$
ALLEYS		

No. 4 Bars on $18^{\prime \prime}$ CTRS. Both ways

1. Apply backer rod as approved by owner

$$
\begin{gathered}
\text { CONSTRUCTION JOINT - PAVING REPAIR } \\
\text { (FOR CONCRETE PAVEMENT REPAIR, ANY THICKNESS) } \\
\text { N.T.S. }
\end{gathered}
$$

A

SAWED CONTRACTION JOINT

NOIE: THE USE OF WOOD TT SUPPORT AND/OR SECURE REDWOCD EXPANSION
EXPANSION JOINT
(SPACED 500 FT. MAXIMUM; LOCATE AT
STRUCTURES AND AT INTERSECTION P.C.'S \& P.T.'S)
JOINT SEALING DETAIL
N.T.S.

				COPPELL	STANDARD CONSTRUCTION DETAILS	$\begin{aligned} & \hline \text { STO. SPEC } \\ & \text { REERENCE } \\ & 303 ., 401 . \end{aligned}$
5		SM	AUG. 19		REINFORCED CONCRETE PAVEMENT	
$\frac{2}{1}$		$\stackrel{\text { sm }}{\text { Sm }}$			PAVEMENT JOINTS	STANDARD OETAML
vo.	LOCAL EXCEPTION		DATE		CITY OF COPPELL DALLAS COUNTY, TEXAS	2050

Add contraction joints like in Coppell 2060 detail.
*cleanup lines through median

造

				COPPELL	STANDARD CONSTRUCTION DETAILS	STD. SPECREFERENCE$\text { 303., } 401 .$
					REINFORCED CONCRETE PAVEMENT	
A		ka	Sper 20		TRANSVERSE JOINT SPACING	Standard detal
No.	LOCAL EXCEPTION	Br	DATE		GITY OF COPPELL DALLAS COUNTY, TEXAS	2060

Scale down the top 2 drawings to the same scale as the bottom one
"Ensure compliance with railroad requirements."
"Coordinate with owner of railroad."
"Pavement elevation should match closely to top of rail."

Remove detail and reference TxDoT detail in specs if needed
$8^{\prime \prime}$ minimum stabilized subgrade per section 301 and as approved or specified by owner

8" minimum stabilized subgrade per section 301 and as approved or specified by owner

8" minimum stabilized subgrade per section 301 and as approved or specified by owner

Make a note and graphical change on integral curb and gutter detail to show rebar.

Make rebar the same size in all details and callout as \#4 bars.
 (FEDERAL REGISTER/ VOL. 69, NO. 141, FRIDAY, JULY 23, 2004)
COCATON:
SLOPE
SLOPES ON CURB RAMPS SHALL BE MEASURED AS FOLLOWS: ($Y: x=$ VERTCAL:HORIZONTAL $)$
A) TRANSITIONS FROM RAMPS TO WALKS, GUTIERS, OR STREETS SHALL BE FLUSH AND FREE OF ABRUPT CHANGES.
b) MAXIMUM SLOPES OF ADJINING
C) THE LEAST POSSIBLE SLOPE SHALL BE USED FOR ANY RAMP. THE MAXIMUM SLOPE OF A RAMP IN NEW CONSTRUCTION SHALL BE 1:12. THE MAXIMUM RISE FOR ANY RUN SHALL BE $30^{\prime \prime}$ (760 MM) CURB RAMPS AND RAMPS TO BE CONSTRUCTED ON EXISTING SITES OR IN EXISTING BUI
FACIUTES MAY HAVE SLOPES AND RISES IF SPACE LIMITATONS PROHIET THE USE OF A 1:12 SLOPE OR LESS. AS FOHOWS:

1. A SLOPE BETWEEN $1: 10$ AND $1: 12$ IS Allowed FOR A MAXIMUM RISE OF 6 ",
2. A SLOPE BETWEEN $1: 8$ AND 1:10 IS ALLOWED FOR A MAXIMUM OF $3^{\prime \prime}$

A SLOPE STEEPER THAN $1: 8$ IS NOT ALLOWED.

$\frac{\text { RAMP WIDTH: }}{\text { THE VINMUM }}$

SURFACE:
URFACES OF CURB RAMPS, Shall be stable firm, and sup resistant. surface textures shall consist of EXPOSED CRUSHED STONE AGGREGATE, ROUGHENED, CONCRGIE, RUBBER, RASED ABRASINE STRIPS, OR GROOVES,
XTENDING THE FUUL WIDTH AND DEPTH OF THE CURE RAMP, SURFACES THAT ARE RASED, ETCHED, OR GROOVED IN A WAY THAT WOULD ALOW WATER TO ACCUMUATE ARE PROHIGIED. FOR PUURPOSES OF WARNING, HE FULL WITTH AND DEPTH OF CURB RAMPS SHAL HAVE A UGHT REFLECTIVE VALUE AND TEXTURE THAT IGNIFICANLLY CONTRASTS WITH THAT OF ADJOINING PEDESTRIAN ROUTES.
SIDES OF CURB RAMPS:
F A CURB RAMP IS LOCATED WHERE PEDESTRIANS MUST WALK ACROSS THE RAMP, OR WHERE IT IS NOT PROTECTED BY HANDRALLS OR GUARDRAILS, IT SHALL HAVE FLARED SIDES. THE MAXIMUM SLOPE OF THE FLARE PROLC
SHEL $1: 10$ (SEE FIG. 1 (A)) CURB RAMPS WTH RETURNED CURES MAY BE USED WHERE PEDESTRIANS WOULD NOT WALK ACROSS THE RAMP. (SEE FIG. 1 (B))

BUILT-UP RAMPS: (SEE FIG. 2)
OASTRUCTIONS:
CURB RAMPS SHALL BE LOCATED OR PROTECTED TO PREVENT THEIR OBSTRUCTION BY PARKED VEHICLES OCATION AT MARKED CROSSINGS.
CURB RAMPS AT MARKED CROSSINGS SHALL be wholly contained within the markings, excluding
DAGONAL CURE RAVPS
DAGONAL CURB RAYPS;
IF DAGONAL $O R$ CORNER TYP) CURB RAMPS HAVE RETURNED CUROS OR OTHER WELL DEFINED EEGES SUCH EEGGES
SHAL BE PARALEL TO THE DIKECTION OF PEDESTRAN FLOW. THE BOTOM OF DAGONAL CURB RAMPS SHAL HAVE
 CLEAR SPACE SHALL ${ }^{\text {BE }}$ WITHIN THE MARKINSS. IF DIAGONAL CURB RAMPS HAVE FLARED SIDES, THEY SHALL ALSO
HAVE AT LEAT A $24^{\circ}(610$ MM L LONG SEGMENT OF STRAGHT CURB LOCATED ON EACH SIDE OF THE CURB RAMP AND WTHIN THE MARKED CROSSING. ANY RAISED ISLANAS IN CRRSSINGS SHALL EEE CUT TROUGH LEVE WITH THE
STREET OR HAVE CURB RAMPS AT BOTH SIDES AND A LEVEL AREA AT LEAST 48 (1220 MM) LONG BETWEEN THE SIREET OR HAVE CURB RAMPS AT BOIH SDES AND A LEVEL AREA AT LEAST
CURB RAMPS IN THE PART OF THE ISLAND INTERSECTED BY THE CROSSINGS.
CONSTRUCTION
(A.) THE CONTRACTOR SHALL SAWCUT, REMOVE AND DISPOSE OFF-SITE THE REQUIRED EXISTING CONCRETE SIDEWALK,
CURB AND GUTIER, TO CONSTRUCT THE PROPOSED RAMPS.

(C.) THE CONTRACTOR SHALL USE 1" PREMOLDED EXPANSION JOINT MATERIAL BETWEEN THE PROPOSED SIDEWALKS
AND RAMPS AT THE GACK OF CURBS, AND AT JOINTS AT NO EXTRA PAY. AND RAMPS AT THE BACK OF CURBS, AND AT WONIS AT NO
(D.) DUMMY JOINT REQUIRED EVERY $4^{\prime} \operatorname{IN} 4^{\prime}$ WDE SIDEWALKS AND EVERY 5^{\prime} IN 6^{\prime} WIDE SIDEWALK.

CURB RAMPS		simowo scencaton mevenc

Update and remove 2125A or update to reference other detail

Use
 Arlington Drawings for residential driveway approaches

Update
2150, 2155, 2160 and to include residential, commercial and alley approach

Use
 Arlington Drawings for residential driveway approaches

Add cross section view like 2150A

Residential		
DRIVEWAY APPROACH		
RADIUS RETURN TYPE		

NOTES:

1. THE SLOPE OF THE DRNE WHERE SIDEWALKS CROSS SHALL HAVE A MAXIVUM CROSS SLOPE OF 2%
2.

	SLOPE (MAX)*	SLAB THICKNES
RESIDENTAL	6%	$5^{\prime \prime}$
ALL OTHERS	3%	$6^{\prime \prime}$

- maximum slope designated for new development IMPROVEMENT RECONSTRUCTION OR REBUILD PRONECTS
(ALSO SEE THE DESIGN CRITERIA MANUAL FOR OTHER SPECIFIC CRTERIA.)

3. ALL CONNECTIONS TO STATE RIGHT-OF-WAY SHALL USE TXDOT
4. CONCRETE SHAL BE CLASS C, $5 \quad 1 / 2$ SACK AND HAVE
5. MINIMUM VELOCITY TTHROUGH PIPE IS 2.5fps. MINIMUM SLOPE IN PIPE IS 0.5% UNLESS OTHERWISE DESIGNED TO MEET MINIMUM
6. IN SOME CASES A SWALE MAY BE PROVIDED IN UEU OF THE PIPE THE PROPERTY OWNER AND OWNER'S ENGINEER WIL NEED
TO DETERMINE IF A SWALE CAN BE USED IN UEU OF A PIPE.

Use Coppell Drawings for Alley

 driveway approaches

Use Coppell Drawings
for Alley
approaches

Use Coppell
Drawings
for Alley
approaches

1. REINFORCED CONCRETE PAVEMENT:

A CURBS SHAU BE PLACED INTEGRAL WTH PAVEMENT UNLESS
B. CURER SEALL MEET THE SAME COMPRESSIVE STRENGTH AS

SPECIFIED FOR TET THE SAM
BAR LAPS SHALL BE 30 DIAMETERS.
REINFORCING DEVCES APPROVED BY THE OWNER.
2. SUBGRADE: (UNLESS OTHERWISE SPECIFIED BY OWNER)
A. SUBGRADE UNDER ALL PAVEMENTS SHALL BE STABILIZED TO A MINMUM DEPTH OF 6° WFHM HVPRAFE HME OR CEMENT WHE THE P.I. OF THE NPLAEE NATERAAL IS GREATER THAN IS. LABORATORY LESTS MUS BE PERFORMED TO DEIERMNE THE OR BELOW. SATURATON P.I. (PH ≥ 12.4) WL WE BE THE LIMIT WHEN A SOl'S PI CANNOT BE BROUGHT TO 15 OR LOWER.
B. WHERE THE INPLACE MATERIAL HAS A P.I. OF LESS THAN 15 , THE
SUBGRADE SHALL BE SCARIFIED TO A MINMUM DEPTH OF $6^{\prime \prime}$ AND RECOMPACTED.
C. Where sulfates are present consult a geotechnical engineer for recommended subgrade treatment

HE ROADWAY IS A DESIGNATED BIKE ROUTE OR BIKE USAGE IS
3. IF THE ROADWAY IS A DESIGNATED BIKE ROUTE OR BIKE USAGE IS ANTCIPAED, REER TO NCTCOS SESIGN-MANAL FOR DESIGN GUIDANCE.

American Association of State Highway and Transportation Officials AASHTO Guide for the Development of Bicycle Facilities (2012, 4th Edition) or the Texas Manual on Uniform Traffic Control Devices (TMUTCD) :
https://mutcd.fhwa.dot.gov/resources/state info/texas/tx .htm

If the Pl is 15 or greater lime shall be used, if the PI is less than 15 cement shall be used or as
recommended by a geotech engineer

PAVEMENT SYSTEMS		302,303	
GENERAL NOTES		OCT. ${ }^{\text {anzzen}}$	2190

Make sure this matches the updated Alley Approaches from Coppell

Remove and reference the TxDOT Metal Beam Guard Fence

Remove and reference the TxDOT Metal Beam Guard Fence

Remove and reference the TxDOT Metal Beam Guard Fence

Remove and reference the TxDOT Metal Beam Guard Fence

1. EXCEPT WHERE USED AT STRUCTURES THAT ARE NARROWER THAN CROWN WIDTH OR WHERE OTHERWSE INDICATED ON PLANS, THE FACE OO THE GUARD FENCE SHALL BE LLOCATED A MINMMM OF ONE FOOT FROM THE SHOULDER EDGE ON EXISTNG ROADWAYS AND A MINMUM OF TWO FEET FROM THE SHOULDE
ESGE ON NEW CONSTRUCTON. THE EXACT POSITION SHALL BE AS SHOWN ELSEWHERE ON THE PLANS

2. AT THE OPTION OF THE CONTRACTOR THE METAL BEAM ELEMENTS FOR THE GUARD FENCE MAF BE FURNSHED
IN EITHER $121 / 2$ QR 25 FOOT NOMINAL LENGTHS. BEAM ELEMENTS SHALL BE FURNISHED MTH POST IN EITHER $121 / 2$ QR 25 FOOT NOMINAL LENGTHS. BEAM ELEMENTS SHALL BE FURNISHED WTH POST
BOLT SLOTS FOR $5 / 8$ DIAMETER BOLT CONNECTIONS TO POSTS.
3. BOLTS SHALL BE OF SUFFICIENT LENGTH TO EXTEND THROUGH THE FULL THICKNESS OF THE NUT
AND NO MORE THAN $3 / 4$ BEYON IT.
4. THE TOP OF THE TERMINAL ANCHOR POST ASSEMBLY AND ALL STEE1 TTTTNGS THEREON SHALL BE GALVANIZED AS SHOWN.
5. WHERE ROCK IS ENCOUNTERED OR WHERE SHOWN ON THE PLANS, THE DIAMETER OF THE HOLES AND THE MATERIAL FOR BACKFLLLNG SHALL BE AS DIRECXED YY THE ENGINEER. TMBER POSTS SHALL
NOT BE SET IN CONCRETE.
6. THE TERMINAL ANCHOR POST SHALL BE SET IN CLASS "A" CONCRETE. CONCRETE SHALL BE SUBSIDIARY TO THE BID ITEMMMETAL BEAM GUARD FEEEE.

Remove and reference the TxDOT Metal Beam Guard
7. TMBER POSTS MAY BE BEVELED AT APPROXIMATELY 10 DEGREES ON THE TOP OR BOTH ENDS WTH HIGH SIDE OF TOP OF POST PYACED TOWARD THE ROADWAY OR THEY MAY BF DOMED
8. AN ANCHOR OTHER THAN TO A TERMINAL ANCHOR POST SHALL CONSIST OF A CONNECTON SIMLLAR TO
9. SPECIAL FABRIIATION WLL BE REOUIRED IN INSTALLATIONS HAVNG A CURVATURE OF LESS THAN 150° RAD少
10. wogr posts must be treated in manner approved by the engineer.

1. THE SPECIAL END SHOE ANCHOR MAY BE USED WTH THE $18^{" \prime} \times 5^{\prime}-0^{\circ}$ CONCRETE FOOTNG OR THE ANGLE
ANCHOR MAY BE USED WTH THE $2^{\prime}-6^{"}$ SQUARE OR EQUIVALENT I2
2. all metal elements wll be 12 gauge steel unless stated othermse on plans.

$\text { OCT. }{ }^{\text {DAKE, } 04}$	

Remove and reference the TxDOT Metal Beam Guard Fence
(1.) THE T.A.S. AND TYPICALY ADJACENT 25' MBGF SHOULD BE FLARED FROM THE SHOULDER EDGE AT $25: 1$ TO

 (3. THE SSOPE BETWEEN THE CRONO UNE AND OUTIEE EDGE OF SHOULER SHOULD BE 10: OR ORELATER. THE CROUN SHOULD BE WDENED TO ACCOMODATE MBGF, TYPICALLY THE CROW LINE SHOULD BE 2 FEET FROM
JHE OUTSIDE SHOULDER EDGE (SEE TYPICAL CROSS SECTION). 4. FOR RESTRICTVE WDTH BRIDGES, A 25 FOOT TANGENT SECTION OF MBGF SHOULD CONNECT TO THE WNGWALL
THE ADJOINING MBGF THAT LIES WTHIN THE ROADWAY (LANE \& SHOULDER AREAS) CRONN SHOLD BE FLARED AT THE RATE OF 25: 1 (LONGITUDINAL: LATERAL). LENGTH SHOULD BE GOVERNED BY TAABULATED VALUES OR
AL THE LENGTH NECESSARY TO LOCATE THE BURIED ANCHOR AT A 2-FOOT OFFSET FROM SHOULDER EDCE,
(5.) AVERAGE DALIY TRAFFIC (ADT) IS FOR THE CURRENT YEAR. WHERE SIGNFICANT TRAFFIC VOLUME GROWTH IS
ANTICPATED ON LOW VOLUME (O-750 ADT) HIGHWAYS, USE LENGTHS SHOWN FOR HIGHER VOLUME CATEGORY. 6. PROVDE MINMUM 50 FT MUCE PLUS TA S FOR FOUR LAN (6.) PROVDE MIMMUM 5O FT. MBGF PLIUS T.A.S. FOR FOUR LANE UNDIVDED HIGHWAYS. FOR FOUR LANE HIGHAY
WTH A FLUSH MEDIAN OR FOR HIGHWAYS WITH SIX OR MORE LANES, MEGF IS NOT A REQURED BRIGGE END TREATMENT. HOWEVER, OTHER NEARBY HAZARDS MAY WARRANT SHIELDING WTH MBGF.
GENERAL NOTES:

1. FOR METAL BEAM GUARD FENCE DETALS AND METHOD OF TERMINATON, SEE STD. DWGS. NO. $2270 \mathrm{~A}-2270 E$.
2. VARIATONS IN POST SPACINGS AND/OR THE USE OF SPACER BLOCKS OR SHMMS MAY BE REQURED BY THE
ENGINEER IN ORDER TO ACCOMODATE THE REQURED BEAM ELEMENT CONNECTION TO STRUCTURES.
3. OUANTTES OF METAL BEAM GUARD FENCE (MBGF) AT INOIVDUAL BRIDGE ENOS ARE SHOWN ELSEWHERE IN
THE PLANS.

METAL BEAM GUARD FENCE			
TWO-WAY TRAFFIC BRIDGE END		OCT. 'O4	$\begin{aligned} & \text { STMOMOD CRNMUS MO } \\ & 2280 \mathrm{~B} \end{aligned}$

* APPLIES TQ CONSTRUCTION ON NEW ALIGNMENT
OR WHERE EXISTNG ROADWAY CROSS SECTON OR WHERE EXISING ROADWAY CROSS SECTI
IS TO BE WIDENED TO INCREASE ROADWAY WITH. DOES NOT ARLY TO REHABLITATION
WORK WHERE EXISTING RQADWY CROWN WDTH IS TO BE RETAINED.

LENGTH © OF NEED, L. RT.

TWO LANE HIGHWAYS				$\frac{\text { MULTLANE ONDIVDED HWYS. }}{\text { all ADT }}$	
750 or	ess ADT	more thon	750 ADT		
[1] side	® side	$\mathbb{4}$ side	\# side	$\mathbb{4}$ side	
50 (1)	100	50 (1)	150	0	150

\qquad
A MINIMUM OF EIGHT
POSTS ADACENT TO
THE STRUCTURE SHAL E SPACECTURE SHALL

\qquad
POST TREATMENT AT STRUCTYRES N.T.S.
SECTONAL \& PLACEMENT CONDITION FOR UNUSUAL CONDITIONS, A CUSTOM
DESIGN SHOULD BE DEVELOPED. - INDICATES LEFT SIDE OF TRAFFIC
approaching bridge.
NICATES RIGHT SIDE OF TRAFFI

Remove and reference the TxDOT Metal Beam Guard Fence
\qquad
\qquad
\qquad

Remove and reference the TxDOT Metal Beam Guard Fence

GENERAL NOTES

- THE TYPE OF LINE POST CROUND WOCO POST, RECTANGLAR WOOO POST, OR STEEL POST, WTLL㫙 THE PLANS OR AS OLRECTED BY THE ENGINEP. STEE POSTS TO BE GLLVANIZED IN
 AS NODIFIED ON THE PLANS.
$25^{\prime}-0^{+}$NOWINAL LENGTHS.

3. RAIL POST HOLES ARE OFFSET $3^{\circ}-1 / 2^{\prime}$ FROM STANDARO GUARDFAIL TO ACCONODATE THE
4. BUTTON HEAD PPOST BOLTS \& NUTS" SHELL NEET THE RECUTREVENTS OF (ASTU ASOT) ANO SHALL (FWCI GO) ANO NO WORE THAN 1. BEYONO IT.

5. Where solid rocx is encountered, contact the desicn division for adottional guidance.
6. posts shall not ae set in concrete, of any depth.
7. REFER TO GF (31) STANDABD SHEET FCR Adottional detalls.
8. FLANE CUTTING OF HOLES IN GUARORAIL SHALL NOT 日E PERUITIEO. IF YOU ENCOUNTER MIS-ALIGNED.

OLRECTION of TRAFFIC

REQUIRED ALTERNATIVE FOR CONTINUOUS CURB EXTENDING PAST POST 7 (SEE SHT. 1 GENERAL NOTE 17)

GEMERAL HOTES

 $\times 1-1 / \cdot$. ${ }^{2}$ TTH \%" wuts tastu AS6
 OF THE TRANSITION.
5. Cfrom shal be widened to accomodit the netal beam oumo fence.
 posts shal not ee set in conchete.

SECTION C-C

SECTION D-D
 TRANSITION
(T6)
GF (31) T6-19

GENERAL NOTES

PLAN VIEW

SECTION A-A

SECTION B-B

SECTION C-C

SECTION D-D
 ${ }^{2}$ ITH ITEU 445 , Calvanizinc

5. crown shall be widened to accowcoate the netal bean oukid fence.
6. the lateral approach to the cland fence, shall have a muxjmu slope of ivi ioh.
7. IF SHOMy ELSEEHENE IN THE PLANS OR AS ODRECTED BY THE ENGINEER, THE GUARD FENCE

9. posts shall not oe set jn concrete.

11. REEER to Standano gF (31) For adoritional detalls.

	haroware list	
	ary	DESCAIPTLON
	1	25'-0. W-EEAM RAIL ELEUENT 120A. (TYP)
POST AND BLOCK-OUTTYPES AVATLABLE	5	$71 / 2^{*}$ DIA $\times 6^{\prime}-0^{\prime \prime}$ dowed rouno mood posts (TYP)
	5	$6^{\circ} \times 8^{\prime \prime} \times 66^{\circ}$ RECTANGULAR MOOD POSTS (TYP)
	5	W6 $\times 8.5$ CR $\mathrm{w6} \times 9 \times 72{ }^{\text {c }}$ STEEL POSTS (TYP)
	5	$6^{\circ} \times 8^{\prime \prime} \times 14^{\prime} \times$ moco blocks OR COWPOSLTE (TTP)
FOR W000 POST-	5	\%/ $\times 1818$ guardoail bolts ano nuts (Fbbo4)
	5	\%/6" Round WASHERS (ASTM F436) (FWCL (16)
FOA STEEL POST-	5	\%" $\times 10$ " guardrail bolts ano nuts (febo3)
	16	$\% " \times 1-1 / 4 "^{\text {GUARDRAIL SPLICE BOLTS WITH DOUELE }}$

NOTEI HAROWARE SHALL MEET THE
FOLLONING REQUIREVENTS. CUARDRALL POST BOLTS (ASTM A 307 CR.A)
GUARDRALL ROUNO WASHERS (ASTM FA36)

 RAIL HEIGHT ADJUSTMENT (28" TO 31") TL-3 MASH COMPLIANT

RAIL-ADJ (B) - 19

