2022 Transportation Conformity

Appendix 12.18:
MoSERS Methodology and
Calculation Descriptions

3.0 IMPROVED PUBLIC TRANSIT -- LIGHT RAIL

3.1 System/Service Expansion

Strategy: Increase ridership by providing new rail system services

Description: Expansion of transit system or service can include the addition of rail services through increased frequency or

Project Year: 2023

Project Year: 2023

Description:

route extension. Bus or paratransit services can be expanded with new vehicles and/or route extensions.

Application: Large cities or communities with enough population density Project Code:

to support reasonably frequent transit service.

Variables:		Source		NO _X	voc
EF _B :	Speed-based running exhaust emission factor for affected roadw before implementation (NOx or VOC) (grams/mile) (assume 34 mph, Light Duty Vehiclies in all roadway types)	ay MOVES3	EF _B :	0.11	0.04
EF _{TV} :	Speed-based running exhaust emission factor for transit vehicle	DART	EF _{TV} :	0.00	0.00
F _{T. SOV} :	Percentage of people using a transit vehicle that previously were	MOSERS	F _{T. SOV} :	0.40	0.40
N _{TR} :	New transit ridership (total ridership)	Project Specific	N _{TR} :	17,490	17,490
TEF _{AUTO} :	Auto trip-end emission factor (NOx or VOC) (grams/trip)	MOVES 2010b	TEF _{AUTO} :	0.37	0.47
TEF _{TV} :	Transit vehicle trip-end emission factor (NOx or VOC) (grams/trip) DART	TEF _{TV} :	0.00	0.00
TL _w :	Average auto trip length (to work) (miles)	COG Default	TL _w :	13.28	13.28
TL _{TV} :	Route Length of the Transit Vehicle (miles)	DART	TL _{TV} :	0.00	0.00
VT _{TV} :	Daily vehicle trips by transit vehicle	DART	VT _{TV} :	0.00	0.00
••	Reduction in number of daily automobile vehicle trips		VT _R :	6996.00	6996.00
11,200	Vehicle miles traveled by transit vehicle		VMT _{TV} :	0.00	0.00
	Reduction in daily automobile VMT		VMT _R :	92906.88	92906.88
Conversion Factor:	Convert grams per mile of emissions to pounds per mile of emissions		Conversion Factor:	453.60	453.60
Equation:				NO _X	voc
A = VT _R * TEF _{AUTO}	Reduction in auto start emissions from trips reduced		A:	2588.52	3288.12
K AUTO	Projected Daily Volume of HOV lane		B:	10219.76	3716.28
C = VT _{TV} * TEF _{TV}	Increase in emissions from additional train starts		C:	0.00	0.00
$D = VMT_{TV} * EF_{TV}$	Increase in emissions from additional train running exhaust Where,		D:	0.00	0.00
$VT_R = N_{TR} * F_{T, SOV}$	Number of new transit riders multiplied by the percentage of ride	rs	VT _R :	6996.00	6996.00
$VMT_R = VT_R * TL_W$	Number of vehicle trips reduced multiplied by the average auto to	rip	VMT _R :	92906.88	92906.88
$VMT_{TV/BUS} = VT_{TV} * TL_{TV}$	Number of vehicle trips reduced multiplied by the average transit route length.		VMT _{TV/BUS} :	0.00	0.00
Results:				NO _X	voc
Daily Emission Reduction	on = (A + B – C – D) / Conversion Factor	Daily Emission Reduct		28.24 0.01	15.44 0.01

Source: The Texas Guide to Accepted Mobile Source Emission Reduction Strategies, Texas Transportation Institute, August 2007

Part C and Part D are both equal to zero because the DART system utilizes electric light rail, which has zero-emission train equipment. Local assumptions are calculated from the Dallas-Fort Worth Regional Travel Model and professional judgment of the Dallas Area Rapid Transit and North Central Texas Council of Governments staff.

Shading denotes input variables specific to the project. Other variables are either standard for the program or calculated using these inputs.

Blue - Project Spesific Input Yellow - Assumptions Green - Emission Factors

3.0 Transit-DART 5/5/2022

4.0 High-Occupancy Vehicle Facilities

4.1 Freeway HOV Facilities

Assumptions:

Strategy: Reduction of emissions by decreasing VMT and increased

average speeds on the lane.

Description: Separate lanes on controlled access highways are created

for vehicles containing a specified number of passengers. The lane may be concurrent flow, barrier/buffer separated,

or have a separate right-of-way.

Project Year: 2023

Project Description:

Application: Highways in areas of traffic congestion with sufficient

available right-of-way.

Project Code:

Defaults

MOSERS Formula: Emission Benefit (lbs/day) =[A + B + C] (grams/day)/CF

(grams/lbs)

A= V_{HOV} * (EF_b-EF_a) * L Change in running exhaust emissions due to speed

improvement in HOV lanes.

B= ($V_{GP,B}$ * EF_b - $V_{GP,A}$ * EF_a) * L "assume negligible" Change in running exhaust emissions in general purpose

lanes as a result of vehicle shifted away from general

purpose lanes.

Source

C= VTr (TEFauto + EF b * TLw) Reduction of emission from (auto start exhaust + auto

running exhaust) from trip reduction.

VTr = Np * { Ft*Ft,sov + Frs*Frs,sov} * (1-1/AVOrs)}

Reduction in daily automobile trips.

Assumptions.		Source		Dela	นแธ
AVO _{RS} :	Average vehicle occupancy of rideshare (persons/vehicle)	COG Default	AVO _{RS} :	2.140	2.140
F _{RS} :	Percentage of people attracted to the HOV facility using ride share (decimal)	COG Default	F _{RS} :	0.832	0.832
F _{RS,SOV} :	Percentage of people attracted to the HOV facility using ride share that previously were vehicle drivers (decimal)	COG Default	F _{RS,SOV} :	0.561	0.561
F _T :	Percentage of people attracted to the HOV facility using a transit vehicle (decimal)	COG Default	F _T :	0.143	0.143
F _{T,SOV} :	Percentage of people using a transit vehicle that previously were vehicle drivers (decimal)	COG Default	F _{T,sov} :	0.561	0.561
TL _w :	Average auto trip length (miles)	COG Default	TL _w :	20	20.000
P _G	Annual Population Growth Rate assume 2.5%/Year	COG Default	P_{G}	0.025	0.025
Volume Fraction:	24 Hour Volume to Peak hour Volume Fraction. (peak hour volume / 24 hour volume)	COG Default	\mathbf{V}_{FC}	0.380	0.380
VT _{RF}	(FT * FT,SOV + FRS * FRS,SOV) * (1 - 1/AVORS)		$\mathrm{VT}_{\mathrm{RF}}$	0.291	0.291
Conversion Factor:	Convert grams per mile of emissions to pounds per mile of emissions		Conversion Factor:	453.60	453.600
Variables:		Source			
V _H	Daily Volume of HOV lane	Data management. DART Traffic Counts	V _H .	20049	20049.000
V _Y	Daily Volume Year		\mathbf{V}_{Y}	2010	
	Projected Daily Volume of HOV lane	Estimate	V _{HOV}	27638	27638
$V_{GP,B}$	Volume of general purpose lane , before implementation of HOV.		$V_{GP,B}$		0.000
$V_{GP,A}$	Volume of General purpose lane , after implementation of HOV.		$V_{GP,A}$		0.000
N _P	Total number of expected people using the HOV lanes per day. If Restricted HOV use only peak our Volume [Np =2.14*V _{HOV}]	Data management. DART Traffic Counts or calculated.	N _P	59145	59145
	$Np = 2.14 * V_{HOV}$				
L	Center Line Miles	Project Specific	L	6.057	

4.0 High-Occupancy Vehicle Facilities

4.1 HOV 5/5/2022

on Factors:	Speed		NO _x	VOC
TEF _{AUTO} : Auto trip-end emission factor (NO _x , VOC, or CO) (grams/trip)		TEF _{AUTO} :	0.37	0.47
EF: Speed-based running exhaust emission factor before implementation of HOV facility (NO _x , VOC, or CO) (grams/mile) (assume 43 mph, Light Duty Vehicles on fwy)	43mph	EF _B :	0.06	0.02
EF _{H,A} : Speed-based running exhaust emission factor on HOV facility (NO _x , VOC, or CO) (estimate) (assume 51 mph, Light Duty Vehicles on fwy)	51mph	EF _{H,A} :	0.06	0.02
EF _{GP,A} : Speed-based running exhaust emission factor after implementation of HOV facility (NO _x , VOC, or CO) (general purpose lanes) (estimate) (assume 43 mph, Light Duty Vehicles on fwy)	43mph	EF _{GP,A} :	0.06	0.02

Emission Calculations:				NO _X	voc
A = V _{H,A} * (EF _B - EF _{H,A}) * L	Change in running exhaust emissions from vehicles shifting from general purpose lanes to HOV lanes		A:	0.000	0.000
$B = (V_{GP,B} * E_{FB} - V_{GP,A} * EF_{GP,A}) * L$	Change in running exhaust emissions of vehicles in general purpose lanes as a result of vehicles shifted away from general purpose lanes [assume negligible]	[B =~ 0]	В:	0.000	0.000
C = VT _R [TEF _{AUTO} +EF _B *TLw]	Reduction in Emissions from Trip reduction- including auto start exhaust emissions and running exhaust emission from the entire trip	$[C=(Np*VT_{RF})*(TEF+EF_B*TLw)]$	C:	27056.707	14993.207
			unit of measure:	grams/Day	grams/day
$VT_R = N_P * (F_T * F_{T,SOV} + F_{RS} * F_{RS,SOV}) * (1 - 1/AVO_{RS})$	Reduction in daily Automobile Vehicle trips	$[VTr = Np * VT_{RF}]$	VT _R :	17233.5717	17233.5717

Results:		NO_X	voc
Daily Emission Reduction = (A + B + C) / Conversion Factor	Daily Emission Reduction (lbs/day) =	59.65	33.05
Daily Emission Reduction = (A + B + C) / Conversion Factor	Daily Emission Reduction (tons/day) =	0.03	0.02
Source: The Texas Guide to Accepted Mobile Source Emission Reduction, August 2007			

Shading denotes input variables specific to the project. Other variables are either standard for the program or calculated using these inputs.

Blue - Project Specific Input

Yellow - Assumptions

Green - Emission Factors

Speed and average volume on general-purpose lanes before and after implementation of the HOV facility are equal for part B. Local assumptions are calculated

4.1 HOV 5/5/2022

5.0 Employer-Based Transportation Management Programs

5.1 Transit/Rideshare Services - Vanpools

Strategy: Reduction of vehicle trips and emissions through increased used of

transit, carpooling, or vanpooling.

Project Year: 2023

Project

Description: Employers or groups of employers in activity centers provide

transportation service to and from the work site to transit facilities and homes. The services can include subscription buses, midday and park-

Description:

and-ride shuttles, and Guaranteed Ride Home programs.

Application: Large companies or groups of cooperating businesses.

Project Code: 11048

Variables:		NO _x	VOC
EF _A : Speed-based running exhaust emission factor after implementation (NOx or VOC) (grams/mile) (assume 34 mph, Light Duty Vehicle on all roadway types)	EF _A :	0.11	0.04
EF _B : Speed-based running exhaust emission factor before implementation (NOx or VOC) (grams/mile) (assume 34 mph, Light Duty Vehicle on all roadway types)	EF _B :	0.11	0.04
N _{VA} : Number of vehicles after implementation (equal to number of vanpools)	N _{VA} :	83.00	83.00
N _{VOR} : Vehicle Occupancy	N _{VA} :	9.00	9.00
N _{VB} : Number of vehicles before implementation (equal to vanpool occupancy * number of vanpools)	N _{VB} :	747.00	747.00
TEF _{AUTO} : Auto trip-end emission factor (NOx or VOC) (grams/trip)	TEF _{AUTO} :	0.37	0.47
TL _A : Average auto trip length after implementation (miles)	TL _A :	85.00	85.00
TL _B : Average auto trip length before implementation (miles)	TL _B :	35.00	35.00
VT _A : Vehicle trips after implementation	VT _A :	166.00	166.00
VT _B : Vehicle trips before implementation	VT _B :	1494.00	1494.00
Conversion Convert grams per mile of emissions to pounds per mile of emissions Factor:	Conversion Factor:	453.60	453.60
Facultian			
Equation:		NO _x	voc
A = VT _B * TL _B * EF _B Auto running exhaust emissions before strategy implementation	A:	NO _x 5751.90	2091.60
A = VT _B * TL _B * EF _B Auto running exhaust emissions before strategy			
A = VT _B * TL _B * EF _B Auto running exhaust emissions before strategy implementation	B:	5751.90	2091.60
A = VT _B * TL _B * EF _B Auto running exhaust emissions before strategy implementation B = VT _A * TL _A * EF _A Auto running exhaust emissions after strategy implementation C = (VT _B - VT _A) * TEF _{AUTO} Reduction in start exhaust emissions from reduction in vehicle	B:	5751.90 1552.10	2091.60 564.40
A = VT _B * TL _B * EF _B Auto running exhaust emissions before strategy implementation B = VT _A * TL _A * EF _A Auto running exhaust emissions after strategy implementation C = (VT _B - VT _A) * TEF _{AUTO} Reduction in start exhaust emissions from reduction in vehicle trips to/from employment center Modified from the following Source: The Texas Guide to Accepted Mobile Source Emission Reduction Strategies, August 2007 VT _A = NV _A * 2 trips/day Number of vehicles before or after strategy implementation	B:	5751.90 1552.10	2091.60 564.40
A = VT _B * TL _B * EF _B Auto running exhaust emissions before strategy implementation B = VT _A * TL _A * EF _A Auto running exhaust emissions after strategy implementation C = (VT _B - VT _A) * TEF _{AUTO} Reduction in start exhaust emissions from reduction in vehicle trips to/from employment center Modified from the following Source: The Texas Guide to Accepted Mobile Source Emission Reduction Strategies, August 2007	B: C:	5751.90 1552.10 491.36	2091.60 564.40 624.16
A = VT _B * TL _B * EF _B Auto running exhaust emissions before strategy implementation B = VT _A * TL _A * EF _A Auto running exhaust emissions after strategy implementation C = (VT _B - VT _A) * TEF _{AUTO} Reduction in start exhaust emissions from reduction in vehicle trips to/from employment center Modified from the following Source: The Texas Guide to Accepted Mobile Source Emission Reduction Strategies, August 2007 VT _A = NV _A * 2 trips/day Number of vehicles before or after strategy implementation	B: C: VT _A :	5751.90 1552.10 491.36	2091.60 564.40 624.16
A = VT _B * TL _B * EF _B Auto running exhaust emissions before strategy implementation B = VT _A * TL _A * EF _A Auto running exhaust emissions after strategy implementation C = (VT _B - VT _A) * TEF _{AUTO} Reduction in start exhaust emissions from reduction in vehicle trips to/from employment center Modified from the following Source: The Texas Guide to Accepted Mobile Source Emission Reduction Strategies, August 2007 VT _A = NV _A * 2 trips/day Number of vehicles before or after strategy implementation VT _B = NV _B * 2 trips/day multiplied by two trips per day (round trip).	B: C: VT _A :	5751.90 1552.10 491.36 166.00 1494.00	2091.60 564.40 624.16 166.00 1494.00

Source: The Texas Guide to Accepted Mobile Source Emission Reduction Strategies, Texas Transportation Institute, August 2007

Local assumptions for vanpool projects are calculated from them monthly performance measures reported by the Dallas Area Rapid Transit and the Fort Worth Transit Authority for fiscal years 2004 to 2010. This analysis also incorporates an assumption of equal emission factors, trips, and trip length before and after implementation of the vanpool programs.

Shading denotes input variables specific to the project. Other variables are either standard for the program or calculated using these inputs.

Blue - Project Specific Input

Yellow - Assumptions

Green - Emission Factors

5.1 Vanpool-Dart 5/5/2022

7.0 Traffic Flow Improvements -- TTI Equation

7.1 Traffic Signalization

Strategy: Traffic signalization projects can measurably reduce CO and HC emissions by decreasing vehicular stops and idling, which

would in turn reduce travel times and traffic delays.

Project Year: 2023

Description: Traffic signalization increases the efficiency of traffic flow at intersections by improving interconnection and coordination of signals, leading to reductions in travel times, delays, and stopand-go driving. Traffic signalization can be as simple as updating the equipment and/or software or improving the timing plan. Because signal improvements reduce travel times and stop-and-go driving conditions, they can measurably reduce CO and HC emissions as well as reducing fuel consumption.

Project Level 1 Improvement: **Description:** Basic Traffic Signal Retiming.

Application: Major arterials or high capacity roadways with uncoordinated

traffic signals.

Project Code:

Variables:		Source		NO _X	voc
EF _i ':	Idling emission factor (NOx or VOC) (grams/mile) (equal to the emission factor at 2.5 mph for all vehicle types in all roadway).	MOVES3	EF _i ':	1.01	0.43
EF _i :	Idling emission factor (NOx or VOC) (grams/hour) (equal to the emission factor at 2.5 mph, multiplied by 2.5 miles to get units of grams/hour)		EF _I :	2.53	1.08
D _B :	Time delay before project implementation (seconds)	COG Default	D _B :	31.00	31.00
D _A :	Time delay after project implementation (seconds)	COG Default	D _A :	25.00	25.00
V:	Bi-directional arterial volume for analysis period	Project Specific	V:	19,590	19,590
P,H _R	Peak Hour Ration	COG Default	P,H _R	0.46	0.46
$V_{D,P}$:	Average daily volume during the peak period		V _{D,P} :	9011.40	9011.40
V _{D,OP} :	Average daily volume during the off-peak period		$V_{D,OP}$:	10578.60	10578.60
DR:	Reduction in time delay (seconds)	COG Default	DR:	6.00	6.00
	Convert grams per mile of emissions to pounds per mile of emissions	Standard	Conversion Factor:	453.60	453.60
Equation:				NO_X	voc
, 2 ,, .	Change in exhaust emissions from improved speed during the peak and off-peak periods.		A:	37.92	16.15
	Change in idling exhaust emissions from improved traffic flow during the peak and off-peak periods.		В:	44.52	18.95
Results:				NO _X	voc
Daily Emission Re	eduction = (A + B)/Conversion Factor	Daily Emission Reduction (lbs/day) =		0.18	0.08
		Daily Emiss	ion Reduction (tons/day) =	0.00	0.00

Source: The Texas Guide to Accepted Mobile Source Emission Reduction, August 2007

Local variable calculations utilize data from the Highway Capacity Manual, and the Dallas-Fort Worth Travel Demand Model.

Shading denotes input variables specific to the project. Other variables are either standard for the program or calculated using these inputs.

Blue - Project Specific Input Yellow - Assumptions

Green - Emission Factors

7.1 TSI 5/5/2022

7.0 Traffic Flow Improvements -- TTI Equation

7.2 Traffic Operations: Intersection Improvements

Strategy: Reduce congestion in corridors and intersections, improving traffic speeds and reducing idling times, leading to lower

emission and improved traffic system efficiency.

Description: Traffic operation improvements, similar to traffic signalization improvements primary focus on reducing congestion on local

and arterial streets by improving the systems efficiency.
Generally, each action will improve traffic flow and safety.
Many roadway changes require only signage and pavement marking changes with little new construction and are relatively

quick to implement.

Application: Major arterials or high capacity roadways.

Project

Description:

Project Year: 2023

Project Code:

Variables:	Source		NO _x	voc
EF _I *: Idling emission factor (NOx or VOC) (grams/mile) (equal to the emission factor at 2.5 mph)	MOVES3	EF _i ':	1.01	0.43
EF ₁ : Idling emission factor (NOx or VOC) (grams/hour) (equal to the emission factor at 2.5 mph, multiplied by 2.5 miles to get		EF ₁ :	2.53	1.08
D _B : Time delay before project implementation (seconds)	COG Default	D _B :	31.00	31.00
D _A : Time delay after project implementation (seconds)	COG Default	D _A :	25.00	25.00
V: Bi-directional arterial volume for analysis period	Project Specific	V:	19,590.00	19,590.00
P , H _R Peak Hour Ration	COG Default	P,H _R	0.46	0.46
$V_{D,P}$: Average daily volume during the peak period		$V_{D,P}$:	9011.40	9011.40
$\mathbf{V}_{\mathbf{D},\mathbf{OP}}$: Average daily volume during the off-peak period		V _{D,OP} :	10578.60	10578.60
DR: Reduction in time delay (seconds)	COG Default	DR:	6.00	6.00
Conversion Convert grams per mile of emissions to pounds per mile of Factor: emissions	Standard	Conversion Factor:	453.60	453.60
Equation:			NO _x	voc
A= (D _B - D _A) * Change in exhaust emissions from improved speed EF _I * V _{D,P} during the peak and off-peak periods.		A:	37.92	16.15
$B=(D_B-D_A)^*$ Change in idling exhaust emissions from improved traffic $EF_I^*V_{D,OP}$ flow during the peak and off-peak periods.		В:	44.52	18.95
Results:			NOx	VOC
Daily Emission Reduction = (A + B)/Conversion Factor	Daily Emission Reduction (lbs/day) =		0.18	0.08
	Daily Emiss	ion Reduction (tons/day) =	0.00	0.00

Source: The Texas Guide to Accepted Mobile Source Emission Reduction, August 2007

Local variable calculations utilize data from the Highway Capacity Manual, and the Dallas-Fort Worth Travel Demand Model.

Shading denotes input variables specific to the project. Other variables are either standard for the program or calculated using these inputs.

Blue - Project Specific Input Yellow - Assumptions

Green - Emission Factors

7.2 Intersection Improvements 5/5/2022

Regional ITS Benefits

County	NOX (tons/day)	VOC (tons/day)	% ITS Coverage	% Emission (Nonrecurrent)1	% Recurrent Congestion Eliminated	% Nonrecurrent Congestion Eliminated1
Collin	2.24	0.34	88	N/A	0.05	N/A
Dallas	13.05	2.12	87	N/A	0.05	N/A
Denton	2.32	0.32	89	N/A	0.05	N/A
Tarrant	6.61	1.18	88	N/A	0.05	N/A
Total	24.22	3.96	-	N/A	0.05	N/A

	Collin	Dallas	Denton	Tarrant	Four County Total (tons/day)
Reduction in Estimated NOX Emissions Caused by Peak Hour Nonrecurrent Congestion1	N/A	N/A	N/A	N/A	N/A
Reduction in Estimated NOX Emissions Caused by Peak Hour Recurrent Congestion	0.10	0.57	0.10	0.29	1.06
Reduction in Estimated Total NOX Emissions Caused by Peak Hour Congestion	0.10	0.57	0.10	0.29	1.06
Reduction in Estimated VOC Emissions Caused by Peak Hour Nonrecurrent Congestion1	N/A	N/A	N/A	N/A	N/A
Reduction in Estimated VOC Emissions Caused by Peak Hour Recurrent Congestion	0.02	0.09	0.01	0.05	0.17
Reduction in Estimated Total VOC Emissions Caused by Peak Hour Congestion	0.02	0.09	0.01	0.05	0.17

7.0 Traffic Flow Improvements -- TTI Equation

7.5 Grade Separation (Road-Road)

Green - Emission Factors

 $\textbf{Strategy:} \ \ \text{Reduce congestion in corridors by reducing idling times and}$

leading to lower emissions and improved traffic system

efficiency.

Description: Grade Separations increases the efficiency of traffic flow at

intersections by reduction in travel times, delays, and stop-and-

o drivina

Application: Major arterials or high capacity roadways.

Project Year: 2023

Project Description:

Project Code:

Variables:	:	Source		NO _x	voc
EF _i ':	: Idling emission factor (NOx or VOC) (grams/mile) (equal to the emission factor at 2.5 mph)	MOVES3	EF/:	1.01	0.43
EF _i	: Idling emission factor (NOx or VOC) (grams/hour) (equal to the emission factor at 2.5 mph, multiplied by 2.5 miles to get units of grams/hour)		EF ₁ :	2.53	1.0
D _B	: Time delay before project implementation (seconds)	COG Default	D _B :	45.00	45.0
D _A	: Time delay after project implementation (seconds)	COG Default	D _A :	0.00	0.0
V	: Bi-directional arterial volume for analysis period	Project Specific	V:	94,685	94,68
P,H _F	R Peak Hour Ration	COG Default	P,H _R	0.46	0.40
V _{D,P}	: Average daily volume during the peak period		$V_{D,P}$:	43555.10	43555.1
$V_{D,OP}$: Average daily volume during the off-peak period		$V_{D,OP}$:	51129.90	51129.9
DR	: Reduction in time delay (seconds)	COG Default	DR:	45.00	45.0
	n Convert grams per mile of emissions to pounds per mile of emissions	Standard	Conversion Factor:	453.60	453.6
Equation	:			NO _X	voc
	* Change in exhaust emissions from improved speed , during the peak and off-peak periods.		A:	1374.71	585.2
, 2 ,,,	* Change in idling exhaust emissions from improved traffic , flow during the peak and off-peak periods.		В:	1613.79	687.0
Results	:			NO _x	voc
Daily Emission I	Reduction = (A + B)/Conversion Factor	Daily Emiss	ion Reduction (lbs/day) =	6.59	2.8
		Daily Emiss	ion Reduction (tons/day) =	0.00	0.0
	as Guide to Accepted Mobile Source Emission Reduction, Aug	gust 2007			
Source: The Tex					
	culations utilize data from the Highway Capacity Manual, and t	he Dallas-Fort Wo	th Travel Demand	l Model.	

7.5 Roadway-Grade Separation 5/5/2022

7.0 Traffic Flow Improvements

7.5 Railroad Grade Separation

Strategy: Grade separation of rail lines and arterial streets reduces congestion in corridors by reducing idling times and leading to lower emissions

and improved traffic system efficiency.

Description: Railroad grade separations remove periodic traffic delays on major roadways by raising or lowering either the rail line or the roadway and permitting more efficient flow of traffic at major rail crossings.

Project Description/ Code:

Project Year: 2023

Application: Arterials with delays cause by at-grade rail crossings.

Variables:	Source		NO _X	voc
EF ₁ : Idling emission factor (NOx or VOC) (grams/mile). (Emission factor at 2.5 mph).	MOVES3	EF _i ':	1.01	0.43
EF ₁ : Idling emission factor (NOx or VOC) (grams/hour) (equal to the emission factor at 2.5 mph, multiplied by 2.5 miles to get units of grams/hour)		EF _I :	2.53	1.08
t_{c} : Average amount of time rail crossing is closed due to train crossing (hours/crossing)	TRE	t _c :	0.025	0.025
$\mathbf{t_{H}}$: Duration of analysis period (hours)		t _H :	24.00	18.00
\mathbf{t}_{F} Frequency of Train per analysis period.	TRE	t _F	30.00	30.00
$t_{\text{H,C}} {:}\ \text{Hours per analysis period roadway is closed due to train crossing}$	TRE	t _{H,C} :	0.75	0.75
V: Bi-directional arterial volume for analysis period	TxDOT	V:	19,656.49	19,656.49
Conversion Factor: Convert grams per mile of emissions to pounds per mile of emissions	Standard	Conversion Factor:	453.60	453.60
Equation:			NO _X	voc
$A = t_{H,C} / t_H * V$ The proportion of arterial traffic affected by rail crossing delays		A:	614.27	819.02

A = 1	t _{H,C} / t _H * V The proportion of arterial traffic affected by rail crossing delays	A:	614.27	819.02
B = 1	t _C / 2 * EF _I The idling emissions resulting from affected traffic assumed to be idling half of the average time the roadway is closed per train crossing	B:	0.03	0.01

Results: Daily		NO _X	voc
Modified from the following Source: The Texas Guide to Accepted Mobile Source E	Daily Emission Reduction (lbs/day) =	0.04	0.02
	Daily Emission Reduction (tons/day) =	0.00	0.00

Source: The Texas Guide to Accepted Mobile Source Emission Reduction Strategies , August 2007

Local variable calculations utilize data from the Dallas-Fort Worth Regional Travel Model, Federal Railroad Administration, Union Pacific Railroad, the Association of American Railroads (Railroad Facts" 1999 Edition, the Trinity Railway Express June 2003 Schedule, and the Regional Rail Corridor Study Consultant Team: URS Corporation, Carter-Burgess, and Lonnie Blaydes Consulting.

Shading denotes input variables specific to the project. Other variables are either standard for the program or calculated using these inputs.

Blue - Project Specific Input

Yellow - Assumptions

Green - Emission Factors

7.5 Rail Grade Separation 5/5/2022

8.0 Park-and-Ride/Fringe Parking

8.1 New Facilities

Strategy: Reduction of vehicle trips and VMT by enhancements of

transit system and ridesharing.

Project Year: 2023

Description: Construction of new park-and-ride facilities in locations remote from the central city area or major business activity centers or on the fringes of major employment centers. Lots or garages are constructed adjacent to or very near transit facilities or heavily traveled corridors. These lots are designed to be conducive to several modes of $transportation \ including \ pedestrian \ and \ bicycle \ facilities.$ New facilities will require coordination with other transportation agencies, and political and citizen groups.

Project Description:

Application: Cities with a population density great enough to warrant

Project Code:

projects that encourage carpooling

Variables:	Source		NO _X	VOC
EF _B : Speed-based running exhaust emission factor before implementation (NOx or VOC) (grams/mile) (assume 34 mph, Light Duty Vehicles in all roadway types)	MOVES3	EF _B :	0.11	0.04
N _{PK} : Number of parking spaces	Project Specific	N _{PK} :	499	499
U _P : Parking lot utilization rate (estimate)	COG Default	U _P :	0.85	0.85
TL _w : Average auto work trip length (miles)	COG Default	TL _w :	20.00	20.00
TL_{PR}: Average auto trip length from home to parking facility (miles)	COG Default	TL _{PR} :	4.00	4.00
Conversion Convert grams per mile of emissions to pounds per mile of Factor: emissions		Conversion Factor:	453.60	453.60

Results			NO _X	VOC
Daily Emissions Reduction=	[N _{PK} * U _P * (TL _W - TL _{PR}) * EF _B * 2 trips/day] / Conversion Factor	Daily Emission Reduction (lbs/day) =	3.29	1.20
		Daily Emission Reduction (tons/day) =	0.00	0.00

Source: The Texas Guide to Accepted Mobile Source Emission Reduction Strategies, Texas Transportation Institute, August 2007.

Local assumptions are calculated from data generated by the Dallas-Fort Worth Regional Travel Model, and from professional judgment of the North Central Texas Council of Governments staff.

Shading denotes input variables specific to the project. Other variables are either standard for the program or calculated using these inputs.

Blue - Project Specific Input

Yellow - Assumptions

Green - Emission Factors

8.1 Park and Ride 5/5/2022

11.0 Bicycle and Pedestrian Programs

11.1 Bicycle and Pedestrian Lanes or Paths

Strategy: Replacement of vehicle trips and VMT with bicycle and

pedestrian travel.

Description: A wide variety of bicycle and pedestrian projects are available to

practitioners for implementation in air quality mitigation efforts. Funding for these types of programs has increased dramatically under ISTEA and TEA-21. Examples of such projects include (but are not limited to): reallocation of right-of-way to accommodate bicycles and pedestrians, new trails, median refuges at key intersections, improved connections between

Description:

Project Code:

Daily Emission

Reduction (tons/day) =

0.00

0.00

Project Year: 2023

Project

residential areas and transit stops.

Application: Areas where travel distances (residential/work or retail sites, for

example) are short enough for bicycle/ pedestrian travel to be

practical.

Variables:	Source		NO_X	voc
EF _B : Speed-based running exhaust emission factor for participants' trip before participating in the bike/pedestrian program (NO _x or VOC) (grams/mile) (assume 34 mph, LDV and arterial roadway types).	MOVES 3	EF _B :	0.06	0.02
TEF _{AUTO} : Auto trip-end emission factor (NOx or VOC) (grams/trip)	MOVES 3	TEF _{AUTO} :	0.37	0.47
TL _B : Average auto trip length before implementation (miles)	COG default	TL _B :	1.00	1.00
N _{BW} : Number of trips utilizing the bike/pedestrian facility	BP team	N _{BW} :	2,020	2,020
Where,				
N _{BW} is calculated using bike needs indices (BNI) and pedestrian needs indices (PNI).				
Conversion Factor: Convert grams per mile of emissions to pounds per mile of emissions		Conversion Factor:	453.6	453.6
Results:			NO _x	VOC
Daily Emissions Reduction = $(N_{BW} * TL_B * EF_B) + (N_{BW} * TEF_{AUTO})$ / Conversion Factor		Daily Emission Reduction (Ibs/day) =	1.91	2.18

Source: The Texas Guide to Accepted Mobile Source Emission Reduction Strategies, August 2007

Final Units of measure: grams/day.

Shading denotes input variables specific to the project. Other variables are either standard for the program or calculated using these inputs.

Blue - Project Specific Input

Yellow - Assumptions

Green - Emission Factors

11.1 Bike Peds 5/5/2022